• Title/Summary/Keyword: Effective Thermal Efficiency

Search Result 277, Processing Time 0.026 seconds

A Study on Transient Thermal Behavior During the Charging Process in a Stratified Water Storage Tank and Its Storage Efficiency (성층 온수 저장 중 과도 열거동과 축열효율에 관한 연구)

  • Pak, E.T.;Chu, Y.J.;Kim, Y.H.
    • Solar Energy
    • /
    • v.17 no.3
    • /
    • pp.13-21
    • /
    • 1997
  • In this study, the theoretical equation of thermal storage efficiency was established to applied long term hot water storage system. The, effective thermal diffusivity and storage efficiency were, measured through the experiment to predict the degree of mixture in thermal storage tank. The effective thermal diffusivity was inversely preportional to the storage efficiency. The most effective storage efficiency was obtained under condition of low flow rate and using the perforated distributor.

  • PDF

Experimental Study on the Thermal Storage Efficiency Through Variable Porous Mainfolds in a Test Storage Tank (실험 저장조내의 유입구 형상변화에 따른 열 저장효율에 관한 실험적 연구)

  • Pak, Ee-Tong;Hwang, Sung-Il;Choi, Young-Il
    • Solar Energy
    • /
    • v.9 no.3
    • /
    • pp.37-43
    • /
    • 1989
  • This paper dealt with thermal storage efficiency due to difference ($T_{\infty}-Ti$) between the mean temperature of water in the storage tank [$0.5m{\times}0.5m{\times}1.0m$] and the temperature of water flowing into the tank, flow rate of water flowing into the tank and shape of porous manifold which water flow into the tank through. As results of experiments; (1) When the flow rate was constant and the diameter of porous section decreased by 8mm, 6mm, and 4mm, the thermal storage efficiency increased. (2) When the diameter of porous section was constant and the difference ($T_{\infty}-Ti$) between the mean temperature of water in the storage tank and the temperature of water flowing into the tank increased by -30, -20, -10, 5, 10, 15 ($^{\circ}C$), the thermal storage efficiency increased. (3) When the($T_{\infty}-Ti$) was constant and the flow rate decreased by 0.8, 0.4, 0.25(LPM), the thermal storage efficiency increased. (4) When the shape of porous section was rigid, the thermal storage efficiency was the most effective, and with establishing flexible porous section or mesh, the effective thermal storage efficiency was obtained.

  • PDF

Analysis of thermal energy efficiency for hollow fiber membranes in direct contact membrane distillation

  • Park, Youngkyu;Lee, Sangho
    • Environmental Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.347-353
    • /
    • 2019
  • Although membrane distillation (MD) has great promise for desalination of saline water sources, it is crucial to improve its thermal efficiency to reduce the operating cost. Accordingly, this study intended to examine the thermal energy efficiency of MD modules in a pilot scale system. Two different modules of hollow fiber membranes were compared in direct contact MD mode. One of them was made of polypropylene with the effective membrane area of $2.6m^2$ and the other was made of polyvinylidene fluoride with the effective membrane area of $7.6m^2$. The influence of operation parameters, including the temperatures of feed and distillate, feed flow rate, and distillate flow rate on the flux, recovery, and performance ratio (PR), was investigated. Results showed that the two MD membranes showed different flux and PR values even under similar conditions. Moreover, both flow rate and temperature difference between feed and distillate significantly affect the PR values. These results suggest that the operating conditions for MD should be determined by considering the module properties.

A Thermodynamic Analysis on the Performance with turning Diesel Cycle into Diesel-Atkinson Cycle (디젤기관의 아트킨슨 사이클화에 따른 제반성능의 열역학적 해석)

  • 노기철;정양주;이종태
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.1-11
    • /
    • 2004
  • In order to recognize thermal efficiency and power improvement in case that diesel cycle is turned into diesel-atkinson cycle, the fuel-air diesel-atkinson cycle considered gas exchange process is analyzed non-dimensionally and thermodynamically. As a result, in case of diesel-atkinson cycle, as expansion ratio is increased, thermal efficiency and mean effective pressure is increased and it has maximum value at Rec=1. When diesel cycle is turned into diesel-atkinson cycle by late intake valve closing timing, thermal efficiency and power is decreased because of the decline of effective compression ratio and intake airflow, but it could be compensated by increase of compression ratio or super-charged. In case compression ratio is compensated, Rec appears 1 around 100$^{\circ}$ ABDC, and it is expected that thermal efficiency is enhanced by 14.3% compared with conventional diesel cycle. In case compression ratio and intake airflow are compensated simultaneously, super-charged pressure is demanded 2.06bar at Rec=1 and it is more efficient when only compression ratio is compensated in the view point of thermal efficiency.

The effects of particle shape on the effective thermal conductivity enhancement of nanofluids (나노유체 입자상 모양의 유효 열전도도에의 영향)

  • Koo, June-Mo;Kang, Yong-Tae
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2106-2109
    • /
    • 2008
  • Nanofluids have been studied as possible alternatives for heat transfer fluids to improve the efficiency of heat exchangers. There are deviations of measured effective thermal conductivities between research-groups, and the mechanisms of the effective thermal conductivity enhancement of nanofluids are not confirmed yet. In this study, the effects of particle shape on the effective thermal conductivity enhancement are discussed and presented as a possible explanation of the deviations. The particle motion effect is found to be negligible for nanofluids of high aspect ratio cylindrical particles, which is believed to be important for nanofluids of spherical particles, while the percolation network formation and contact resistance play dominant roles in determining the effective thermal conductivity.

  • PDF

A Study on the Problem-Solving Method and Thermal Efficiency Properties at the Time of High Expansion Realization in a 4-Cycle Diesel Engine (4사이클 디젤기관에서 고팽창 실현 시 문제점 해결방안과 열효율 특성에 대한 연구)

  • Jang, Tae-Ik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.835-842
    • /
    • 2009
  • The present thesis carried out a research on a compression pressure's reduction phenomenon and its countermeasure according to the thermal efficiency improvement method by a Miller method in 4-cycle low speed diesel engine. In case of retardation of intake valve closing time in a engine, the theoretical heat efficiency shows a remarkably reducing trend when a compression ratio is not compensated. Accordingly, the thermal efficiency showed an increasing trend in case of compensating the compression ratio. Especially, it could be understood that the theoretical heat efficiency at near ABDC $100^{\circ}$ of intake valve closing time in case of compensation of the compression ratio was improved by around 25.1%, and the mean effective pressure was also increased by around 18.6%. Also, as the retardation of intake valve closing time increases, air quantity becomes insufficient due to a backflow phenomenon of intake air and thus thermal efficiency was decreased in a high load operation domain. The solving method of this problem is possible by supercharge. Therefore, in order to improve thermal efficiency by retardation of ntake valve closing time, the thermal efficiency improvement according to low compression is possible when there are a compensation device of a compression ratio and a supercharge device. This is a problem-solving method of low compression and high expansion cycle.

A study on cement-based grout for ground heat exchangers (지중 열교환기용 시멘트 그라우트에 관한 연구)

  • Lee, Dong-Ju;Baek, Hwan-Jo;Kim, Gyoung-Man
    • Journal of Industrial Technology
    • /
    • v.31 no.B
    • /
    • pp.27-36
    • /
    • 2011
  • In this paper, the applicability of cement grout has been studied as an alternative to bentonite grout for backfill ground heat exchangers. To provide an optimal mixture design, the thermal conductivity of cement grout and bentonite grout with various mixture ratios were experimentally evaluated and compared. Numerical analyses using Fluent(FVM program) were applied to compare the thermal transfer efficiency of the cement grout with that of the bentonite grout used in the construction. Also the effective ground thermal conductivity was measured by In-situ thermal response test. The results showed that the thermal efficiency of the cement grout was better than the bentonite grout. Consequently, the cement grout could be an alternative with more thermal efficiency to bentonite grout for ground heat exchangers.

  • PDF

Evaluation of performance of closed-loop vertical ground heat exchanger by In-situ thermal response test (현장 열응답 시험을 통한 수직 밀폐형 지중열교환기의 성능 평가)

  • Lee, Chul-Ho;Park, Moon-Seo;Kwak, Tae-Hoon;Choi, Hang-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.229-239
    • /
    • 2010
  • Performing a series of in-situ thermal response tests, the effective thermal conductivity of six vertical closed-loop ground heat exchangers was experimentally evaluated and compared each other, which were constructed in a test bed in Wonju. To compare thermal efficiency of the ground heat exchangers in field, the six boreholes were constructed with different construction conditions: grouting materials (cement vs. bentonite), different additives (silica sand vs. graphite) and the shape of pipe-sections (general U-loop type vs. 3 pipe-type). From the test results, it can be concluded that cement grouting has a higher effective thermal conductivity than that of bentonite grouting, and the efficiency of graphite better performs over silica sand as a thermally-enhancing addictive. In addition, a new 3 pipe-type heat exchanger provides less thermal interference between the inlet and outlet pipe than the conventional U-loop type heat exchanger, which results in superior thermal performance.

  • PDF

Optimization Study on the Performance Analysis of Organic Rankine Cycle for Characteristics of Low Temperature Heat Sources (저온열원의 특성에 따른 ORC 성능해석 최적화 연구)

  • Eom, Hong-Sun;Yoon, Cheon-Seog;Kim, Young-Min;Shin, Dong-Gil;Kim, Chang-Gi
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.1
    • /
    • pp.51-60
    • /
    • 2012
  • Optimization procedures of performance analysis for ORC(Organic Rankine Cycle) system are established to the characteristics of low temperature heat sources such as open-type and closed-type. Effective heat recovery and heat extraction related to maximum power of the cycle as well as heat quality and thermal efficiency must be considered in the case of the open-type low temperature heat source. On the other hand, in the case of the closed-type low temperature heat source, only thermal efficiency is important due to constant heat input. In this study, thermal efficiency and exergy efficiency representing a level of close to Carnot cycle are studied, as useful index for the optimization of the ORC system. To validate the results of cycle analysis, those are compared with appropriate experimental data of ORC system as a thermal efficiency point of view.

Measurement of The Thermal Transfer Coefficient Predicting Efficiency of The Heat Pipe (히트파이프 성능예측 열전달계수 측정)

  • Lim, Soo-Jung;Moon, Jong-Min;Rhee, Gwang-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2039-2042
    • /
    • 2008
  • Recently, Electronic & Electrical Products have problems how to reduce heat in trend reducing size and increasing speed. heat pipes worked by latent heats can solve problems for effective and quiet electronic applications. Heat Pipes have to be suitably designed for the external conditions due to showing optimum performance. it has influence on efficiency of heat pipes to the exterior structure changed by length, bending angle, diameter. Designing heat pipes has depended on experience from trial and error. this method wasted too many resources, but can't guarantee efficiency. to prevent those wastes, this study aims at making the thermal transfer coefficient predicting efficiency. In this study, the thermal transfer coefficient has been made from experimental results that used variables - lengths between heat source and radiation, bending angles, diameters of heat pipes. variables become non-dimensional in modeling process for making the coefficient.

  • PDF