• Title/Summary/Keyword: Effective Shear Stress

Search Result 399, Processing Time 0.023 seconds

Effect of Residual Shear Strain on the Relationship between Volumetric Strain and Effective Stress after Liquefaction (액상화 후 잔류전단변형률이 체적변형률과 유효응력 관계에 미치는 영향)

  • Kwon, Youngcheul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.11
    • /
    • pp.55-62
    • /
    • 2010
  • The settlements by liquefaction seldom occur uniformly because of soil homogeneity, however differential settlements are major cause of the damages to structures. From the past researches, author paid attention to the fact that stress history during undrained cyclic shear process affects greatly on the volumetric strains of the post-liquefaction. Therefore, the effect of the residual shear strain in cyclic shear process was examined in this study. The experiment apparatus based on strain control with volumetric strain control device was used for the study to investigate the effect of the residual strain on the relationship between volumetric strain and effective stress of clean and granite sandy soil. It could be seen an insignificant difference in the volumetric strain after liquefaction under various residual shear strain conditions in the case of clean sand. On the other hand, in granite sandy soil, the volumetric strain after liquefaction was small when the lower level of the residual shear strain was applied. And, the residual shear strain during cyclic shear affected the shape of the relation curve between effective stress and volumetric strain as well.

Thickness of shear flow path in RC beams at maximum torsional strength

  • Kim, Hyeong-Gook;Lee, Jung-Yoon;Kim, Kil-Hee
    • Computers and Concrete
    • /
    • v.29 no.5
    • /
    • pp.303-321
    • /
    • 2022
  • The current design equations for predicting the torsional capacity of RC members underestimate the torsional strength of under-reinforced members and overestimate the torsional strength of over-reinforced members. This is because the design equations consider only the yield strength of torsional reinforcement and the cross-sectional properties of members in determining the torsional capacity. This paper presents an analytical model to predict the thickness of shear flow path in RC beams subjected to pure torsion. The analytical model assumes that torsional reinforcement resists torsional moment with a sufficient deformation capacity until concrete fails by crushing. The ACI 318 code is modified by applying analytical results from the proposed model such as the average stress of torsional reinforcement and the effective gross area enclosed by the shear flow path. Comparison of the calculated and observed torsional strengths of existing 129 test beams showed good agreement. Two design variables related to the compressive strength of concrete in the proposed model are approximated for design application. The accuracy of the ACI 318 code for the over-reinforced test beams improved somewhat with the use of the approximations for the average stresses of reinforcements and the effective gross area enclosed by the shear flow path.

OCR evaluation of cohesionless soil in centrifuge model using shear wave velocity

  • Cho, Hyung Ik;Sun, Chang Guk;Kim, Jae Hyun;Kim, Dong Soo
    • Geomechanics and Engineering
    • /
    • v.15 no.4
    • /
    • pp.987-995
    • /
    • 2018
  • In this study, a relationship between small-strain shear modulus ($G_{max}$) and overconsolidation ratio (OCR) based on shear wave velocity ($V_S$) measurement was established to identify the stress history of centrifuge model ground. A centrifuge test was conducted in various centrifugal acceleration levels including loading and unloading sequences to cause various stress histories on centrifuge model ground. The $V_S$ and vertical effective stress were measured at each level of acceleration. Then, a sensitivity analysis was conducted using testing data to ensure the suitability of OCR function for the tested cohesionless soils and found that OCR can be estimated based on $V_S$ measurements irrespective of normally-consolidated or overconsolidated loading conditions. Finally, the developed $G_{max}$-OCR relationship was applied to centrifuge models constructed and tested under various induced stress-history conditions. Through a series of tests, it was concluded that the induced stress history on centrifuge model by compaction, g-level variation, and past overburden load can be analysed quantitatively, and it is convinced that the OCR evaluation technique will contribute to better interpret the centrifuge test results.

Space grid analysis method in modelling shear lag of cable-stayed bridge with corrugated steel webs

  • Ma, Ye;Ni, Ying-Sheng;Xu, Dong;Li, Jin-Kai
    • Steel and Composite Structures
    • /
    • v.24 no.5
    • /
    • pp.549-559
    • /
    • 2017
  • As few multi-tower single-box multi-cell cable-stayed bridges with corrugated steel webs have been built, analysis is mostly achieved by combining single-girder model, beam grillage model and solid model in support of the design. However, such analysis methods usually suffer from major limitations in terms of the engineering applications: single-girder model fails to account for spatial effect such as shear lag effect of the box girder and the relevant effective girder width and eccentric load coefficient; owing to the approximation in the principle equivalence, the plane grillage model cannot accurately capture shear stress distribution and local stress state in both top and bottom flange of composite box girder; and solid model is difficult to be practically combined with the overall calculation. The usual effective width method fails to provide a uniform and accurate "effective length" (and the codes fail to provide a unified design approach at those circumstance) considering different shear lag effects resulting from dead load, prestress and cable tension in the construction. Therefore, a novel spatial grid model has been developed to account for shear lag effect. The theoretical principle of the proposed spatial grid model has been elaborated along with the relevant illustrations of modeling parameters of composite box girder with corrugated steel webs. Then typical transverse and longitudinal shear lag coefficient distribution pattern at the side-span and mid-span key cross sections have been analyzed and summarized to provide reference for similar bridges. The effectiveness and accuracy of spatial grid analysis methods has been finally validated through a practical cable-stayed bridge.

FATIGUE DAMAGE PARAMETER OF SPOT WELDED JOINTS UNDER PROPORTIONAL LOADING

  • KANG H. T.
    • International Journal of Automotive Technology
    • /
    • v.6 no.3
    • /
    • pp.285-291
    • /
    • 2005
  • In this paper, the author proposes a fatigue damage parameter of spot welded joints under proportional loading. The proposed fatigue damage parameter is developed based on von Mises' equivalent stress and local structural stress at the edge of spot weld nugget. The structural stress at the edges of the weld nugget in each sheet is calculated using the forces and moments that are determined by finite element analysis. A structural equivalent stress is then calculated by von Mises' equivalent stress equation. The structural equivalent stresses are correlated to experimental fatigue life of the spot welded joints. The proposed parameter is evaluated with fatigue test data of spot welds subjected to multi axial and tensile-shear loads. Sheppard's parameter and Rupp and co-workers' parameter are also evaluated with the same test data to compare with the author's parameter. This proposed parameter presents a better correlation with experimental fatigue data than those of Sheppard's and Rupp and co-workers' parameter. The proposed parameter should be very effective for durability calculations during the early design phase since coarsely meshed finite element models can be employed.

A stress-function variational approach toward CFRP -concrete interfacial stresses in bonded joints

  • Samadvand, Hojjat;Dehestani, Mehdi
    • Advances in concrete construction
    • /
    • v.9 no.1
    • /
    • pp.43-54
    • /
    • 2020
  • This paper presents an innovative stress-function variational approach in formulating the interfacial shear and normal stresses in an externally bonded concrete joint using carbon fiber-reinforced plastic (CFRP) plies. The joint is subjected to surface traction loadings applied at both ends of the concrete substrate layer. By introducing two interfacial shear and normal stress functions on the CFRP-concrete interface, based on Euler-Bernoulli beam idea and static stress equations of equilibrium, the entire stress fields of the joint were determined. The complementary strain energy was minimized in order to solve the governing equation of the joint. This yields an ordinary differential equation from which the interfacial normal and shear stresses were proposed explicitly, satisfying all the multiple traction boundary conditions. Lamination theory for composite materials was also employed to obtain the interfacial stresses. The proposed approach was validated by the analytic models in the literature as well as through a comprehensive computational code generated by the authors. Furthermore, a numerical verification was carried out via the finite element software ABAQUS. In the end, a scaling analysis was conducted to analyze the interfacial stress field dependence of the joint upon effective issues using the devised code.

Experimental study on the shear failure model for concrete under compression-shear loading

  • Shu, Xiaojuan;Luo, Yili;Zhao, Chao;Dai, Zhicheng;Zhong, Xingu;Zhang, Tianyu
    • Computers and Concrete
    • /
    • v.29 no.2
    • /
    • pp.81-92
    • /
    • 2022
  • The influence of normal stress perpendicular to the potential shear plane was always neglected in existing researches, which may lead to a serious deviation of the shear strength of concrete members in practice designs and numerical analyses. In this study, a series of experimental studies are carried out in this paper, which serves to investigate the shear behavior of concrete under compression shear loading. Based on the test results, a three-phase shear failure model for cohesive elements are developed, which is able to take into consideration the influence of normal stress on the shear strength of concrete. To identify the accuracy and applicability of the proposed model, numerical models of a double-noted concrete plate are developed and compared with experimental results. Results show that the proposed constitutive model is able to take into consideration the influence of normal stress on the shear strength of concrete materials, and is effective and accurate for describing the complex fracture of concrete, especially the failure modes under compression shear loadings.

shear Tests on female-to-female Type Joint between Precast Concrete Bridge Decks (프리캐스트 콘크리트 교량바닥판 female-female이음부의 전단실험)

  • 김영진;김영진;김종희
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.161-168
    • /
    • 1998
  • Increase of traffic volume in recent years results in deterioration of the bridge slab, which is directly subjected ot vehicle loads. Where extensive repair is necessary, replacement or enhancement of load carrying capacity using full depth precast concrete deck is often the most practical solution. Precast deck system has transverse joints between adjacent precast decks. Vertical shear forces occur when a vehicle wheel load is carried by precast decks and the joints are used to transfer the load to an adjacent deck. Effective load transfer between precast decks is critical for integral behavior. Finite element analysis and tests were run on the proposed femal-to-female type joint. 18 joint specimens were tested to investigate the effects of angle. D/H, and confining stress under static load. Results indicate joint with angle of 60$^{\circ}$ and D/H of 1/4 shows the improved load carrying capacity on crack. It is effective in protecting the cracking of joints to keep the joint in compression using confining stress.

Influence of Analysis Models on Variation of Ground Response during Earthquake (지반응답해석기법의 차이에 의한 지반응답 분산도 평가)

  • Kim, Sung-Ryul;Choi, Jae-Soon;Kim, Soo-Il;Park, Dae-Young;Park, Seong-Yong;Kim, Ki-Poong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2007.09a
    • /
    • pp.317-333
    • /
    • 2007
  • The Round-Robin Test (RRT) for ground response analysis was performed by Division of Geotechnical Earthquake Engineering of Korean Geotechnical Society. This research analyzed the influence of analysis methods on variation of ground response by using the results of this RRT. The analysis methods include equivalent linear analysis, non-linear analysis and effective stress analysis. A total of 5 teams among 12 teams applied two kinds of analysis methods. This research compared the results of these 5 teams and analyzed the variation of the results according to analysis methods. The compared results were shear stress-shear strain relation, transfer function, time history and the response spectrum of ground surface acceleration, peak ground acceleration, peak shear strain and maximum excess pore pressure ratio.

  • PDF

A Proposal of Parameter to Predict Biaxial Fatigue Life for CF8M Cast Stainless Steels (CF8M 주조 스테인리스강의 2축 피로수명 예측을 위한 파라미터의 제안)

  • Park Joong Cheul;Kwon Jae Do
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.6 s.237
    • /
    • pp.815-821
    • /
    • 2005
  • Biaxial low cycle fatigue test was carried out to predict fatigue life under combined axial-torsional-loading condition which is that of in-phase and out-of-phase for CF8M cast stainless steels. Fatemi-Socie(FS) parameter which is based on critical plane approach is not only one of methods but also the best method that can predict fatigue life under biaxial loading condition. But the result showed that, biaxial fatigue life prediction by using FS parameter with several different parameters for the CF8M cast stainless steels is not conservative but best results. So in this present research, we proposed new fatigue life prediction parameter considering effective shear stress instead of FS parameter which considers the maximum normal stress acting on maximum shear strain and its effectiveness was verified.