• 제목/요약/키워드: Effective Multiplication Factor

검색결과 38건 처리시간 0.018초

UNCERTAINTY PROPAGATION ANALYSIS FOR YONGGWANG NUCLEAR UNIT 4 BY MCCARD/MASTER CORE ANALYSIS SYSTEM

  • Park, Ho Jin;Lee, Dong Hyuk;Shim, Hyung Jin;Kim, Chang Hyo
    • Nuclear Engineering and Technology
    • /
    • 제46권3호
    • /
    • pp.291-298
    • /
    • 2014
  • This paper concerns estimating uncertainties of the core neutronics design parameters of power reactors by direct sampling method (DSM) calculations based on the two-step McCARD/MASTER design system in which McCARD is used to generate the fuel assembly (FA) homogenized few group constants (FGCs) while MASTER is used to conduct the core neutronics design computation. It presents an extended application of the uncertainty propagation analysis method originally designed for uncertainty quantification of the FA FGCs as a way to produce the covariances between the FGCs of any pair of FAs comprising the core, or the covariance matrix of the FA FGCs required for random sampling of the FA FGCs input sets into direct sampling core calculations by MASTER. For illustrative purposes, the uncertainties of core design parameters such as the effective multiplication factor ($k_{eff}$), normalized FA power densities, power peaking factors, etc. for the beginning of life (BOL) core of Yonggwang nuclear unit 4 (YGN4) at the hot zero power and all rods out are estimated by the McCARD/MASTER-based DSM computations. The results are compared with those from the uncertainty propagation analysis method based on the McCARD-predicted sensitivity coefficients of nuclear design parameters and the cross section covariance data.

해석함수전개 노달방법에 기초한 3차원 노달확산 코드 (A Three-Dimensional Nodal Diffusion Code Based on the AFEN Methodology)

  • Hong, Ser-Gi;Cho, Nam-Zin;Noh, Jae-Man
    • Nuclear Engineering and Technology
    • /
    • 제27권6호
    • /
    • pp.870-876
    • /
    • 1995
  • 해석함수전개 노달방법에 기초한 새로운 3차원 노달확산 코드가 개발되었다. 이 방법은 균질화된 노드내의 해를 노드내에서 중성자확산방정식을 만족하는 해석적인 18개의 기저함수들과 1개의 상수로 전개한후 노달연관방정식을 노드에 대한 중성자의 균형, 경계면에서의 중성자류의 연속, 모서리주위의 무한히 작은 체적소에 대한 중성자누출의 균형이 만족되도록 유도한다. 이 코드의 정확성을 검증한기 위해 잘 알려진 LMW 표준문제와 IAEA 3차원 문제와 동일한 물질을 가지는 작은 노심문제에 적용하여 QUANDRY코드 및 VENTURE코드의 결과와 비교하였다. 계산결과들은 본 연구에서 개발된 코드가 출력분포 및 유효중배계수를 매우 정확하게 예측함을 보여준다.

  • PDF

A Study of Neutronics Effects of the Spacer Grids in a Typical PWR via Monte Carlo Calculation

  • Tran, Xuan Bach;Cho, Nam Zin
    • Nuclear Engineering and Technology
    • /
    • 제48권1호
    • /
    • pp.33-42
    • /
    • 2016
  • Spacer grids play an important role in maintaining the proper form of the fuel assembly structure and ensuring the safety of reactor core design. This study applies the Monte Carlo method to the analysis of the neutronics effects of spacer grids in a typical pressurized water reactor (PWR). The core problem used to analyze the neutronics effects of spacer grids is a modified version of Korea Advanced Institute of Science and Technology benchmark problem 1B, based on an Advanced Power Reactor 1400 (APR1400) core model. The spacer grids are modeled and added to this test problem in various ways. Then, by running MCNP5 for all cases of spacer grid modeling, some important numerical results, such as the effective multiplication factor, the spatial distributions of neutron flux, and its energy spectrum are obtained. The numerical results of each case of spacer grid modeling are analyzed and compared to assess which type has more advantages in accuracy of numerical results and effectiveness in terms of geometry building. The conclusion is that the most realistic modeling for Monte Carlo calculation is the "volume-preserving" streamlined heterogeneous spacer grids, but the "banded" dissolution spacer grids modeling is a more practical yet accurate model for routine (deterministic) analysis.

Analysis of alpha modes in multigroup diffusion

  • Sanchez, Richard;Tomatis, Daniele;Zmijarevic, Igor;Joo, Han Gyu
    • Nuclear Engineering and Technology
    • /
    • 제49권6호
    • /
    • pp.1259-1268
    • /
    • 2017
  • The alpha eigenvalue problem in multigroup neutron diffusion is studied with particular attention to the theoretical analysis of the model. Contrary to previous literature results, the existence of eigenvalue and eigenflux clustering is investigated here without the simplification of a unique fissile isotope or a single emission spectrum. A discussion about the negative decay constants of the neutron precursors concentrations as potential eigenvalues is provided. An in-hour equation is derived by a perturbation approach recurring to the steady state adjoint and direct eigenvalue problems of the effective multiplication factor and is used to suggest proper detection criteria of flux clustering. In spite of the prior work, the in-hour equation results give a necessary and sufficient condition for the existence of the eigenvalue-eigenvector pair. A simplified asymptotic analysis is used to predict bands of accumulation of eigenvalues close to the negative decay constants of the precursors concentrations. The resolution of the problem in one-dimensional heterogeneous problems shows numerical evidence of the predicted clustering occurrences and also confirms previous theoretical analysis and numerical results.

Static and transient analyses of Advanced Power Reactor 1400 (APR1400) initial core using open-source nodal core simulator KOMODO

  • Alnaqbi, Jwaher;Hartanto, Donny;Alnuaimi, Reem;Imron, Muhammad;Gillette, Victor
    • Nuclear Engineering and Technology
    • /
    • 제54권2호
    • /
    • pp.764-769
    • /
    • 2022
  • The United Arab Emirates is currently building and operating four units of the APR-1400 developed by a South Korean vendor, Korea Electric Power Corporation (KEPCO). This paper attempts to perform APR-1400 reactor core analysis by using the well-known two-step method. The two-step method was applied to the APR-1400 first cycle using the open-source nodal diffusion code, KOMODO. In this study, the group constants were generated using CASMO-4 fuel transport lattice code. The simulation was performed in Hot Zero Power (HZP) at steady-state and transient conditions. Some typical parameters necessary for the Nuclear Design Report (NDR) were evaluated in this paper, such as effective neutron multiplication factor, control rod worth, and critical boron concentration for steady-state analysis. Other parameters such as reactivity insertion, power, and fuel temperature changes during the Reactivity Insertion Accident (RIA) simulation were evaluated as well. The results from KOMODO were verified using PARCS and SIMULATE-3 nodal core simulators. It was found that KOMODO gives an excellent agreement.

Criticality analysis of pyrochemical reprocessing apparatuses for mixed uranium-plutonium nitride spent nuclear fuel using the MCU-FR and MCNP program codes

  • P.A. Kizub ;A.I. Blokhin ;P.A. Blokhin ;E.F. Mitenkova;N.A. Mosunova ;V.A. Kovrov ;A.V. Shishkin ;Yu.P. Zaikov ;O.R. Rakhmanova
    • Nuclear Engineering and Technology
    • /
    • 제55권3호
    • /
    • pp.1097-1104
    • /
    • 2023
  • A preliminary criticality analysis for novel pyrochemical apparatuses for the reprocessing of mixed uranium-plutonium nitride spent nuclear fuel from the BREST-OD-300 reactor was performed. High-temperature processing apparatuses, "metallization" electrolyzer, refinery remelting apparatus, refining electrolyzer, and "soft" chlorination apparatus are considered in this work. Computational models of apparatuses for two neutron radiation transport codes (MCU-FR and MCNP) were developed and calculations for criticality were completed using the Monte Carlo method. The criticality analysis was performed for different loads of fissile material into the apparatuses including overloading conditions. Various emergency situations were considered, in particular, those associated with water ingress into the chamber of the refinery remelting apparatus. It was revealed that for all the considered computational models nuclear safety rules are satisfied.

Overcoming the challenges of Monte Carlo depletion: Application to a material-testing reactor with the MCS code

  • Dos, Vutheam;Lee, Hyunsuk;Jo, Yunki;Lemaire, Matthieu;Kim, Wonkyeong;Choi, Sooyoung;Zhang, Peng;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • 제52권9호
    • /
    • pp.1881-1895
    • /
    • 2020
  • The theoretical aspects behind the reactor depletion capability of the Monte Carlo code MCS developed at the Ulsan National Institute of Science and Technology (UNIST) and practical results of this depletion feature for a Material-Testing Reactor (MTR) with plate-type fuel are described in this paper. A verification of MCS results is first performed against MCNP6 to confirm the suitability of MCS for the criticality and depletion analysis of the MTR. Then, the dependence of the effective neutron multiplication factor to the number of axial and radial depletion cells adopted in the fuel plates is performed with MCS in order to determine the minimum spatial segmentation of the fuel plates. Monte Carlo depletion results with 37,800 depletion cells are provided by MCS within acceptable calculation time and memory usage. The results show that at least 7 axial meshes per fuel plate are required to reach the same precision as the reference calculation whereas no significant differences are observed when modeling 1 or 10 radial meshes per fuel plate. This study demonstrates that MCS can address the need for Monte Carlo codes capable of providing reference solutions to complex reactor depletion problems with refined meshes for fuel management and research reactor applications.

전시공간에서의 촉지적(Haptic)연출 방법에 대한 연구 - 체험전시 공간 중심으로 - (A Study on Haptic Presentation Methods in the Experience Exhibition Spaces - With Experience Exhibition Space -)

  • 조민화
    • 한국실내디자인학회논문집
    • /
    • 제24권6호
    • /
    • pp.229-239
    • /
    • 2015
  • The 21st century is a multiplication age and social and cultural phenomena have become diverse and peoples' desires and individuality have become important. Accordingly, the sensibility that reflects human taste is also required in the exhibition space. The exhibitions in this age induce the direct cognition of senses or take interactive forms that contact diverse media and react. The purpose of this research is to define the concept of haptic presentation method in which the audience perceive in the exhibition space by themselves and the visual elements spread into other senses and perceive complexly, and to present the directional nature. To conduct this research, first, this researcher recognized that haptic sensory experiential research by analyzing the roles and transition history of exhibition space is needed for the present age Second, based on philosophical theories, four haptic sensory expression characteristics (medium nature, experiential nature, attractiveness, sensitiveness) were derived by substituting Giles Deleuze's four haptic spatial characteristics (grasping short distance, dispersed gaze, cognition of bodily movement, formation of synesthesia through complex senses) and six formative factors of exhibition space (space, form, size, light, quality of materials, and color). And the effective exhibition presentation methods were analyzed through six cases of experiential exhibition spaces. Accordingly, what matters in the experiential exhibition space is to produce the four characteristics: medium nature, experientiality, attractiveness, and sensitiveness in equilibrium. It is necessary for the designers to reflect it appropriately in producing so that the audience can think and experience by themselves. Accordingly, in this thesis, it could be seen that to produce the haptic production characteristics in the experiential exhibition space in equilibrium is the important factor in the experiential exhibition space. In conclusion, experiences in the exhibition space should be approached with the transcendental haptic presentation method by which even the space of actually unexperienced cognition can be expanded and experienced through the metastasis and tension of various senses. Also, researches on such senses should be developed continuously, and this researcher expects that this will become a stimulant to present a new directivity.

고리 1호기의 기사용 핵연료 집합체 수송용기 설계에 관한 연구 (Design Study of A Spent Fuel Shipping Cask for Korea Nuclear Unit-1)

  • Moo Han Kim;Chang Sun Kang
    • Nuclear Engineering and Technology
    • /
    • 제14권4호
    • /
    • pp.196-203
    • /
    • 1982
  • 본 논문에서는 고리 1호기의 기사용 핵연료 집합체를 수송하기 위한 Cask를 설계하였다. 이를 위하여 고리 1호기의 기사용 핵연료 집합체로부터 방출되는 감마선과 중성자를 계산하여 MORSE 및 ANISN전산 코드로써 차폐 계산을 수행하였다. 그 결과, 9개의 집합체를 동시에 수송할 수 있는 Steel Cask가 가장 적합하다는 것을 밝혔다. 이 Steel Cask에 대한 안전성을 평가하기 위하여 연료봉의 중심 온도와 복재온도를 계산하여 핵연료의 용융점보다 훨씬 낮음을 증명하였다. 또한 KENO와 MORSE전산 코드를 사용하여 임계도 계산을 수행하여 미임계 상태임을 증명하였다. 이로써 9개의 기사용 핵연료 집합체를 동시에 수송할 수 있는 Steel Cask를 간단히 설계하였다.

  • PDF

KSC-7 사용후핵연료 수송용기 핵임계해석 (Analysis of the criticality of the shipping cask(KSC-7))

  • 윤정현;최종락;곽은호;이흥영;정성환
    • Journal of Radiation Protection and Research
    • /
    • 제18권2호
    • /
    • pp.47-59
    • /
    • 1993
  • 본 연구에서는 사용후핵 연료를 안전하게 수송할 수 있는 수송용기의 여러 가지 설계 항목중에 수송용기 내부에 장전한 핵연료에 의한 핵임계반응을 방지하기 위한 핵임계해석을 수행하였다. 핵임계 해석에 사용한 HANSEN-ROACH-KENO-Va 전산시스템에 대한 검증계산을 수행하였고 수송용기의 핵임계측면에서의 안전성을 확보하기 위해 가능한 보수적인 가정을 하여 어떠한 경우에도 수송용기에 장전된 핵연료가 임계상태에 도달하지 않도록 수송용기 내부의 구조 및 적절한 핵임계 방지제를 선택하였고 정상수송 및 가상사고 조건 등에 대한 해석을 수행하였다. 그 결과 KSC-7 수송용기 의 설계조건을 만족하고 핵임계측면에서의 안전성을 보장할 수 있는 재료 및 구조에 대한 결론을 해석적으로 도출하였다.

  • PDF