• Title/Summary/Keyword: Effective Mass Properties

Search Result 217, Processing Time 0.019 seconds

The Effect of Mass Transfer on the Cure Properties of the Urea Resin Moulding Compounds Under the Drying Process (건조 공정 중 요소 수지 성형재료의 경화 특성에 대한 물질전달 효과)

  • Kim, Sang Yeul;Choi, Il Gon;Kim, Byoung Chul
    • Korean Chemical Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.681-686
    • /
    • 2002
  • In the industrial field, the theory of drying process is different from the practical application, and it is effective to reduce energy by recirculation of the heat of exhausting gas. But the study of this field may not be performed still. The cure properties of the urea resin moulding compounds was investigated according to drying temperature, drying time, recycle rate of exhausting gas and moulding temperature in the process of drying and moulding. We obtained the following results; water content of material decreases with increasing drying time and drying temperature, and the rate of drying also decreases with increasing recycle rate of exhausting gas. Specially, The cure fluidity of the urea resin moulding compounds decreases, with increasing drying temperature, recycle rate of exhausting gas and moulding temperature. And the correlation equations on water content and cure fluidity of the urea resin moulding material were obtained through a regression analysis of experimental data.

Polymer Microlens Fabrication (폴리머 마이크로렌즈 제작)

  • Ryoo, Kunkul;Kim, Younggeun;Jeon, Kwangseok
    • Clean Technology
    • /
    • v.11 no.4
    • /
    • pp.205-211
    • /
    • 2005
  • There have been many technologies and materials proposed for realizing microlens array, and plastic injection is recognized as the most promising one because of several merits such as optical properties, impact resistance, formability, lightening and environmental adaptability. Since PR reflow for injection template fabrication enables the lens shape control easier, and the sample technology more effective for mass production, it lowers the cost, enhances integration, and reduces process steps, which leads to be environmentally benign. However injection of polymers may face the difficulty of formability depending on their properties. In order to overcome the difficulty, fast heating/cooling technology was introduced in this study, and microlenses were fabricated and evaluated. template obtained by PR reflow method was heated and cooled fast during injection to fabricate microlens array. PC and PMMA polymer materials were compared, and it was realized that PMMA showed much better formability due to its lower melting temperature. Injection parameters of pressures and velocities were driven out for injection optimization.

  • PDF

Assessment on the Flame Retardancy for Polyethylene/Montmorillonite Nanocomposite (Polyethylene/Montmorillonite Nanocomposite의 난연성 평가)

  • Song, Young-Ho;Chung, Kook-Sam
    • Fire Science and Engineering
    • /
    • v.20 no.4 s.64
    • /
    • pp.72-76
    • /
    • 2006
  • Polymer/clay nanocomposites have generated considerable interests in the past decade because adding just tiny amount of clay to the polymer matrix could produce a dramatic enhancement in physical, thermal and mechanical properties. Smectite clays, such as montmorillonite (MMT), are of great industrial value because of their high aspect ratio, plate morphology, intercalative capacity, natural abundance and low cost. In this study, PE/MMT nanocomposites were directly prepared by melt intercalating PE and the modified clay. The nanostructure was verified by X-ray diffraction (XRD) and transmission electron microscopy (TEM), and their flame retardant properties were measured and discussed by limiting oxygen index (LOI), char yield and smoke mass concentration. And their thermal stabilities were measured by differential thermogravimetric (DTG) and thermogravimetric analysis (TGA). The PE/MMT nanocomposites proved more effective the conventional composites in reinforcement. Two functions in the thermal stability of the PE/MMT nanocomposite, one is the barrier effect to improve the thermal stability, and another is catalysis, leading to a decrease of the thermal stability. The flammability was greatly decreased due to the formation of the clay-enriched protective char during the combustion.

Effects of DTPA application on Growth of Red Pepper (Capsicum annuum L.) and Chemical Properties of Nutrient Accumulated Soil in Plastic film House

  • Kim, Myung Sook;Kim, Yoo Hak;Lee, Chang Hoon;Park, Seong Jin;Ko, Byong Gu;Yun, Sun Gang;Hyun, Byung Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.4
    • /
    • pp.312-317
    • /
    • 2015
  • This study was conducted to evaluate effects of diethylene triamine penta acetic acid (DTPA) treatment on growth of red pepper and nutrient availability to salt accumulated soil in the plastic film house. The treatments were no application (Control), chemical fertilizers (NPK), DTPA (0.06, 0.13, and 0.19 mM) and the half of chemical fertilizers (NPK) with DTPA 0.06 mM. Fruit yield of red pepper showed no significant difference between the treatments (control, NPK, DTPA 0.06 mM, 0.13 mM, except for DTPA 0.19 mM. Red peppers were killed by DTPA 0.19 mM treatment because the high concentration of DTPA was toxic to crop. However, dry mass (stem and leave) and nutrient uptake of red pepper in DTPA 0.06 mM treatment increased significantly compared with those of control. In particular, nutrient uptake of red pepper in DTPA 0.06 mM treatment increased in the order of Fe, Mn, and Zn > Ca and Mg > K, as the magnitude of the stability constants of DTPA. Thus the application of DTPA 0.06 mM was the most effective for the alleviation of nutrient accumulation in the plastic film house soils.

The Effect of Ag thickness on Optical and Electrical Properties of V2O5/Ag/ITO Multilayer (Ag의 두께에 따른 V2O5/Ag/ITO 구조의 다층 박막의 광학적, 전기적 특성)

  • Ko, Younghee;Park, Gwanghoon;Ko, Hang-Ju;Ha, Jun-Seok
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.1
    • /
    • pp.7-11
    • /
    • 2014
  • Recently, the buffer layers consisting of poly (3,4-ethylenedioxythiophene): poly (styrenesulfonate) (PEDOT-PSS) are extensively used to improve power conversion efficiency (PCE) of organic solar cells. However, PEDOT-PSS is not suitable for mass production of organic solar cells due to its intrinsic acid and hygroscopic properties. Moreover, because of chemical reactions between indium tin oxide (ITO) layer and PEDOT-PSS layer, the interface is not stable. For these reasons, alternative materials such as $V_2O_5$ have been developed to be an effective buffer layer. In this work, we used $V_2O_5$/Ag/ITO multilayer structure for the anode buffer layer. With variation of thickness of Ag layer, we investigated the optical and electrical properties of $V_2O_5$/Ag/ITO multi-layer films. As a result, we found that the electrical properties were improved with increasing Ag thickness while optical transmittance decreases in visible wavelength region. From the calculation of figure of merit (FOM) which is used to evaluate proper structure for transparent of optoelectronic, $V_2O_5$/Ag/ITO multilayer electrode was optimized with 4 nm thick Ag layer in optical (88% in transmittance) and electrical ($4{\times}10^{-4}{\Omega}cm$) properties. This indicates that $V_2O_5$/Ag/ITO multilayer electrode could be a candidate for the anode of optoelectronic devices.

Characterization of Polyester Cloth as an Alternative Separator to Nafion Membrane in Microbial Fuel Cells for Bioelectricity Generation Using Swine Wastewater

  • Kim, Taeyoung;Kang, Sukwon;Sung, Je Hoon;Kang, Youn Koo;Kim, Young Hwa;Jang, Jae Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.12
    • /
    • pp.2171-2178
    • /
    • 2016
  • Polyester cloth (PC) was selected as a prospective inexpensive substitute separator material for microbial fuel cells (MFCs). PC was compared with a traditional Nafion proton exchange membrane (PEM) as an MFC separator by analyzing its physical and electrochemical properties. A single layer of PC showed higher mass transfer (e.g., for $O_2/H^+/ions$) than the Nafion PEM; in the case of oxygen mass transfer coefficient ($k_o$), a rate of $50.0{\times}10^{-5} cm{\cdot}s^{-1}$ was observed compared with a rate of $20.8{\times}10^{-5}cm/s$ in the Nafion PEM. Increased numbers of PC layers were found to reduce the oxygen mass transfer coefficient. In addition, the diffusion coefficient of oxygen ($D_O$) for PC ($2.0-3.3{\times}10^{-6}cm^2/s$) was lower than that of the Nafion PEM ($3.8{\times}10^{-6}cm^2/s$). The PC was found to have a low ohmic resistance ($0.29-0.38{\Omega}$) in the MFC, which was similar to that of Nafion PEM ($0.31{\Omega}$); this resulted in comparable maximum power density and maximum current density in MFCs with PC and those with Nafion PEMs. Moreover, a higher average current generation was observed in MFCs with PC ($104.3{\pm}15.3A/m^3$) compared with MFCs with Nafion PEM ($100.4{\pm}17.7A/m^3$), as well as showing insignificant degradation of the PC surface, during 177 days of use in swine wastewater. These results suggest that PC separators could serve as a low-cost alternative to Nafion PEMs for construction of cost-effective MFCs.

Effect of Polypropylene Fiber on the Freeze-Thaw Damage of Mortar (모르타르의 동결융해 피해에 미치는 폴리프로필렌 섬유의 영향)

  • Yoo, Jae-Chul;Kim, Gyu-Yong;Lee, Sang-Kyu;Hwang, Eui-Chul;Nam, Jeong-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.438-444
    • /
    • 2019
  • In this study, the effect of polypropylene fiber on the freeze-thaw damage of mortar was evaluated experimentally. The effects of the reinforcing of polypropylene fiber on the compressive and bending performance of mortar after 300 cycles of freeze-thaw test were evaluated by comparing the normal mortar and the mortar with polyvinyl alcohol fiber. In addition, the mass loss, relative dynamic elastic modulus, and cumulated pore volume of mortar were measured by each cycle of freeze-thaw test. As a result, it was confirmed that the fiber reinforced mortar, regardless of the fiber type, was effective not only in maintaining the performance of the compressive strength and the bending strength but also suppressing the mass loss after the freeze-thaw test of 300 cycles. Meanwhile, it was confirmed that not only polyvinyl alcohol fibers but also polypropylene fibers can effectively act to suppress the damage of the mortar by freeze-thaw. However, in order to improve the freeze-thaw resistance of mortar mixed with polypropylene fiber, it is necessary to increase the bonding performance with the cement matrix which can be expected from polyvinyl alcohol fiber.

The Effect of the Amount of Polycarboxylate Superplasticizer on the Properties of Ultra-High Performance Fiber-Reinforced Concrete (폴리칼본산계 고성능감수제 사용량이 초고성능 섬유보강 콘크리트의 성질에 미치는 영향)

  • Kang, Su-Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.1
    • /
    • pp.11-18
    • /
    • 2018
  • As the amount of polycarboxylate superplasticizer varied from 1.2% to 3.0% of the mass of binder, the change in the flowability & rheological properties, and strength of UHPFRC was investigated with experiments. The test results presented that the increase in the amount of superplasticizer was effective in improving the flowability up to 1.8%, but addition more than 1.8% was hardly beneficial for enhancing the flowability and rhelogical properties. Compressive strengths with different amounts of superplasticizer showed that the strength with 1.8% was slightly higher than that of 1.2%, but the amount more than 1.8% caused strength reduction, which was higher as the amount increased. The results in flexural strength according to the amount of superplasticizer showed a similar trend with the results in compressive strength. When the effect of compressive strength and fiber distribution characteristics on the flexural strength was analysed separately, it was found that high amount of superplasticizer caused an effect of fiber distribution in addition to the effect of compressive strength on flexural strength. This effect seems to be closely related to the results of flowability or rheological properties.

A Micro Finite Element Analysis on Effects of Altering Monomer-to-Powder ]Ratio of Bone Cement During Vertebroplasty (골 시멘트 중합 비율 변경이 척추성형술 치료에 미치는 영향에 대한 비교 분석)

  • 김형도;탁계래;김한성
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.6
    • /
    • pp.451-458
    • /
    • 2002
  • Osteoporosis is a systemic skeletal disease caused by low bone mass and the decrease of bone density in the microstructure of trabecular bone. Drug therapy(PTH Parathyroid hormone) may increase the trabecular thickness and thus bone strength. Vertebroplasty is a minimally invasive surgery foy the treatment of osteoporotic vertebral compression fracture. This Procedure includes Puncturing vertebrae and filling with Polymethylmethacrylate(PMMA). Although altering recommended monomer-to-Powder ratio affects material properties of bone cement, clinicians commonly alter the mixture ratio to decrease viscosity and increase the working time. The Purposes of this study were to analyze the effect of 4he monomer-to-powder ratio on the mechanical characteristics of trabecular. In this paper, the finite element model of human vertebral trabecualr bone was developed by modified Voronoi diagram, to analyze the relative effect of hormone therapy and vertebroplasty at the treatment of osteoporotic vertebrae. Trabeuclar bone models for vertebroplasty with varied monomer-to-Powder ratio(0.40∼1.07 ㎖/g) were analyzed. Effective modulus and strength of bone cement-treated models were approximately 60% of those of intact models and these are almost twice the values of hormone-treated models. The bone cement models with the ratio of 0.53㎖/g have the maximum modulus and strength. For the ratio of 1.07㎖/g, the modulus and strength were minimum(42% and 49% respectively) but these were greater than those for drug therapy. This study shows that bone cement treatment is more effective than drug therapy. It is found that in vertebroplasty, using a monomer-to-powder ratio different from that recommended by manufacturer nay significantly not only reduce the cement's material Properties but also deteriorate the mechanical characteristics of osteoporotic vertebrae.

Effect of Hypotonic and Hypertonic Solution on Brining Process for Pork Loin Cube: Mass Transfer Kinetics (돼지고기 등심의 염지공정에서 소금농도의 영향: 물질전달 동역학을 중심으로)

  • Park, Min;Lee, Nak Hun;In, Ye-Won;Oh, Sang-Yup;Cho, Hyung-Yong
    • Food Engineering Progress
    • /
    • v.23 no.1
    • /
    • pp.7-15
    • /
    • 2019
  • The impregnation of solid foods into the surrounding hypotonic or hypertonic solution was explored as a method to infuse NaCl in pork loin cube without altering its matrix. Mass transfer kinetics using a diffusive model as the mathematical model for moisture gain/loss and salt gain and the resulting textural properties were studied for the surrounding solutions of NaCl 2.5, 5.0, 10.0 and 15% (w/w). It was possible to access the effects of brine concentration on the direction of the resulting water flow, quantify water and salt transfer, and confirm tenderization effect by salt infusion. For brine concentrations up to 10% it was verified that meat samples gained water, while for processes with 15% concentration, pork loin cubes lost water. The effective diffusion coefficients of salt ranged from 2.43×10-9 to 3.53×10-9 m2/s, while for the values of water ranged from 1.22×10-9 to 1.88×10-9 m2/s. The diffusive model was able to represent well salt gain rates using a single parameter, i.e. an effective diffusion coefficient of salt through the meat. However, it was not possible to find a characteristic effective diffusion coefficient for water transfer. Within the range of experimental conditions studied, salt-impregnated samples by 5% (w/w) brine were shown with minimum hardness, chewiness and shear force.