• Title/Summary/Keyword: Effective Mass Properties

Search Result 213, Processing Time 0.024 seconds

Development of Energy Optimized Geometry Using BIM for Super Tall Office Building in Early Design Stages (BIM을 이용한 건축물 초기 디자인 단계에서 초고층 업무용 건물의 최적 에너지 형태개발)

  • Ryu, Han-Soo;Kim, In-Han;Choo, Seung-Yeon
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.2
    • /
    • pp.83-91
    • /
    • 2011
  • There are many researches to make low-energy building. Lots of them focus on facility systems and insulation performance of building materials. However, not only systematic solutions but also approaches in early design stages are important to reduce energy consumption. Using BIM(Building Information Modelling) is considered as an effective and efficient way to simulate building energy and decide alternatives than traditional energy simulation because BIM based energy simulation makes to reduce much time for energy modeling. This study focuses on development of optimized geometry for super tall office buildings in Seoul, Korea. Specifically, length to width ratio and building orientation are main topics of this study because these two topics are the most basic and preceding factors deciding mass design. In this study, Revit MEP 2011 and Ecotect Analysis 2011 are used to make case models and calculate energy load in early design stages. Energy properties of material abide by Korean Standards for Energy Conservation in Building, Korean Guideline for Energy Conservation in Public Office and ASHRAE Standard in USA. This study presents best length to width ratio of plan and optimized orientation by evaluating the case models. Furthermore, this study suggests what should be considered for each case to decrease energy load.

Structuring of Bulk Silicon Particles for Lithium-Ion Battery Applications

  • Bang, Byoung-Man;Kim, Hyun-Jung;Park, Soo-Jin
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.3
    • /
    • pp.157-162
    • /
    • 2011
  • We report a simple route for synthesizing multi-dimensional structured silicon anode materials from commercially available bulk silicon powders via metal-assisted chemical etching process. In the first step, silver catalyst was deposited onto the surface of bulk silicon via a galvanic displacement reaction. Next, the silver-decorated silicon particles were chemically etched in a mixture of hydrofluoric acid and hydrogen peroxide to make multi-dimensional silicon consisting of one-dimensional silicon nanowires and micro-scale silicon cores. As-synthesized silicon particles were coated with a carbon via thermal decomposition of acetylene gas. The carbon-coated multi-dimensional silicon anodes exhibited excellent electrochemical properties, including a high specific capacity (1800 mAh/g), a stable cycling retention (cycling retention of 89% after 20 cycles), and a high rate capability (71% at 3 C rate, compared to 0.1 C rate). This process is a simple and mass-productive (yield of 40-50%), thus opens up an effective route to make a high-performance silicon anode materials for lithiumion batteries.

Engineering behavior of expansive soils treated with rice husk ash

  • Aziz, Mubashir;Saleem, Masood;Irfan, Muhammad
    • Geomechanics and Engineering
    • /
    • v.8 no.2
    • /
    • pp.173-186
    • /
    • 2015
  • The rapid urbanization in Pakistan is creating a shortage of sustainable construction sites with good soil conditions. Attempts have been made to use rice husk ash (RHA) in concrete industry of Pakistan, however, limited literature is available on its potential to improve local soils. This paper presents an experimental study on engineering properties of low and high plastic cohesive soils blended with 0-20% RHA by dry weight of soil. The decrease in plasticity index and shrinkage ratio indicates a reduction in swell potential of RHA treated cohesive soils which is beneficial for problems related to placing pavements and footings on such soils. It is also observed that the increased formation of pozzolanic products within the pore spaces of soil from physicochemical changes transforms RHA treated soils to a compact mass which decreases both total settlement and rate of settlement. A notable increase in friction angle with increase in RHA up to 16% was also observed in direct shear tests. It is concluded that RHA treatment is a cost-effective and sustainable alternate to deal with problematic local cohesive soils in agro-based developing countries like Pakistan.

Design Sensitivity and Optimum Design of Monopile Support Structure in Offshore Wind Turbine (해상풍력발전기 모노파일 설계민감도해석 및 최적설계)

  • Lee, Ji-Hyun;Kim, Soo-Young
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.1
    • /
    • pp.78-87
    • /
    • 2014
  • Recently the offshore wind turbine development is requested to be installed off south-west coast and Jeju island in Korea. Reliable and robust support structures are required to meet the demand on the offshore wind turbine in harsh and rapidly varying environmental conditions. Monopile is the most preferred substructure in shallow water with long term experiences from the offshore gas and oil industries. This paper presents an optimum design of a monopile connection with grouted transition piece (TP) for the reliable and cost-effective design purposes. First, design loads are simulated for a 5 MW offshore wind turbine in site conditions off the southwest coast of Korea. Second, sensitivity analysis is performed to investigate the design sensitivity of geometry and material parameters of monopile connection based on the ultimate and fatigue capacities according to DNV standards. Next, optimization is conducted to minimize the total mass and resulted in 30% weight reduction and the optimum geometry and material properties of the monopile substructure of the fixed offshore wind turbine.

Lightweight and Performance of Anti-Collision Strength of Automobiles Based on Carbon Fiber Composites

  • Zhang, Hongtao
    • Korean Journal of Materials Research
    • /
    • v.29 no.9
    • /
    • pp.525-531
    • /
    • 2019
  • The widespread use of automobiles has greatly increased energy demand and exhaust gas pollution. In order to save energy, reduce emissions and protect the environment, making lightweights automobiles is an effective measure. In this paper, carbon fiber composites and automobile B-pillars are briefly introduced, and then the mechanical properties and impact resistance of the DC590 steel B-pillars and carbon fiber composites B-pillars are simulated by the ABAQUS finite element software. The results show that the quality of compound B-pillars is reduced by 50.76 % under the same dimensions, and the mechanical property of unit mass is significantly better than that of metal B-pillars. In the course of a collision, the kinetic energy of the two B-pillars is converted into internal energy, but the total energy remains the same; the converted internal energy of the composite B-pillars is greater, the deformation is smaller and the maximum intrusion and intrusion speed is also smaller, indicating that the anti-collision performance of the composite B-pillars is excellent. In summary, the carbon fiber composites can not only reduce the quality of the B-pillars, but also improve their anti-collision performance.

Dynamic stability analysis of a rotary GPLRC disk surrounded by viscoelastic foundation

  • Liang, Xiujuan;Ji, Haixu
    • Geomechanics and Engineering
    • /
    • v.24 no.3
    • /
    • pp.267-280
    • /
    • 2021
  • The research presented in this paper deals with dynamic stability analysis of the graphene nanoplatelets (GPLs) reinforced composite spinning disk. The presented small-scaled structure is simulated as a disk covered by viscoelastic substrate which is two-parametric. The centrifugal and Coriolis impacts due to the spinning are taken into account. The stresses and strains would be obtained using the first-order-shear-deformable-theory (FSDT). For Poisson ratio, as well as various amounts of mass densities, the mixture rule is employed, while a modified Halpin-Tsai model is inserted for achieving the elasticity module. The structure's boundary conditions (BCs) are obtained employing GPLs reinforced composite (GPLRC) spinning disk's governing equations applying principle of Hamilton which is based on minimum energy and ultimately have been solved employing numerical approach called generalized-differential quadrature-method (GDQM). Spinning disk's dynamic properties with different boundary conditions (BCs) are explained due to the curves drawn by Matlab software. Also, the simply-supported boundary conditions is applied to edges 𝜃=𝜋/2, and 𝜃=3𝜋/2, while, cantilever, respectively, is analyzed in R=Ri, and R0. The final results reveal that the GPLs' weight fraction, viscoelastic substrate, various GPLs' pattern, and rotational velocity have a dramatic influence on the amplitude, and vibration behavior of a GPLRC rotating cantilevered disk. As an applicable result in related industries, the spinning velocity impact on the frequency is more effective in the higher radius ratio's amounts.

Bismuth modified gamma radiation shielding properties of titanium vanadium sodium tellurite glasses as a potent transparent radiation-resistant glass applications

  • Zaid, M.H.M.;Matori, K.A.;Sidek, H.A.A.;Ibrahim, I.R.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1323-1330
    • /
    • 2021
  • This work reported the radiation shielding characteristic of the bismuth titanium vanadium sodium tellurite glass system. The density of the specially-developed glass samples was increased from 2.21 to 4.01 g/cm3 with the addition of Bi2O3, despite the fact the molar volume is decease within 85.43-54.79 cm3/mol. The WinXcom program was used to approximate the effect of Bi2O3 on the gamma radiation shielding parameters of bismuth titanium vanadium sodium tellurite glasses. The ㎛ values decrease with the increase of Bi2O3 concentration. The computed data shows that the glass sample with 20 mol.% of Bi2O3 content has the greatest radiation attenuation performance in comparison to other selected glasses. The Bi2O3-TiO2-V2O5-Na2O-TeO2 glass system shows excellent neutron shielding material with high long-term light transmittance and discharge resistance and could be potentially used as transparent radiation-resistant shielding glass applications.

Functional Characteristics of Whey Protein-Derived Peptides Produced Using Lactic Acid Bacteria Hydrolysis

  • Jae-Yong Lee;Dong-Gyu Yoo;Yu-Bin Jeon;Se-Hui Moon;Ok-Hee Kim;Dong-Hyun Lee;Cheol-Hyun Kim
    • Journal of Dairy Science and Biotechnology
    • /
    • v.41 no.1
    • /
    • pp.34-43
    • /
    • 2023
  • Hydrolysis of whey-derived proteins using lactic acid bacteria (LAB) utilizes the mass culture method and fermentation of LAB to produce effective bioactive peptides. Whey protein has the biological potential of its precursors, but the active fragments may not be released depending on the hydrolysis method. As an alternative to these problems, the nutritional and bioactive functionality of the hydrolysis method have been reported to be improved using LAB for whey protein. Peptide fractions were obtained using a sample fast protein liquid chromatography device. Antioxidant activity was verified for each of the five fractions obtained. In vitro cell experiments showed no cytotoxicity and inhibited nitric oxide production. Cytokine (IL [interleukin]-1α, IL-6, tumor necrosis factor-α) production was significantly lower than that of lipopolysaccharides (+). As a result of checking the amino acid content ratio of the fractions selected through the AccQ-Tag system, 17 types of amino acids were identified, and the content of isoleucine, an essential amino acid, was the highest. These properties show their applicability for the production of functional products utilizing dietary supplements and milk. It can be presented as an efficient method in terms of product functionality in the production of uniform-quality whey-derived peptides.

A novel grey TMD control for structures subjected to earthquakes

  • Z.Y., Chen;Ruei-Yuan, Wang;Yahui, Meng;Timothy, Chen
    • Earthquakes and Structures
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • A model for calculating structure interacted mechanics is proposed. A structural interaction model and controller design based on tuned mass damping (TMD) was developed to control the induced vibration. A key point is to introduce a new analytical model to evaluate the properties of the TMD that recognizes the motion-dependent nonlinear response observed in the simulations. Aiming at the problem of increased current harmonics and low efficiency of permanent magnet synchronous motors for electric vehicles due to dead time effect, a dead time compensation method based on neural network filter and current polarity detection is proposed. Firstly, the DC components and the higher harmonic components of the motor currents are obtained by virtue of what the neural network filters and the extracted harmonic currents are adjusted to the required compensation voltages by virtue of what the neural network filters. Then, the extracted DC components are used for current polarity dead time compensation control to avert the false compensation when currents approach zero. The neural network filter method extracts the required compensation voltages from the speed component and the current polarity detection compensation method obtains the required compensation voltages by discriminating the current polarity. The combination of the two methods can more precisely compensate the dead time effect of the control system to improve the control performance. Furthermore, based on the relaxed method, the intelligent approach of stability criterion can be regulated appropriately and the artificial TMD was found to be effective in reducing cross-wind vibrations.

Seismic retrofit of a soft first story structure considering soil effect

  • Michael Adane;Jinkoo Kim
    • Earthquakes and Structures
    • /
    • v.24 no.5
    • /
    • pp.345-352
    • /
    • 2023
  • This paper studied the effect of soil-structure interaction (SSI) on the seismic response and retrofit of a reinforced concrete structure with a soft-first story for different soil types. A 5-story structure built on a 30m deep homogeneous soil mass was considered as a case study structure, and steel column jacketing and steel bracing were chosen as seismic retrofit methods. Seismic responses of a fixed-base and a flexible base structure subjected to seven scaled earthquake records were obtained using the software OpenSees to investigate the effect of soil on seismic response and retrofit. The nonlinearBeamColumn elements with the fiber sections were used to simulate the nonlinear behavior of the beams and columns. Soil properties were defined based on shear wave velocity according to categorized site classes defined in ASCE-7. The finite element model of the soil was made using isoparametric four-noded quadrilateral elements and the nonlinear dynamic responses of the combined system of soil and structure were calculated in the OpenSees. The analysis results indicate that the soil-structure interaction plays an important role in the seismic performance and retrofit of a structure with a soft-first story. It was observed that column steel jacketing was effective in the retrofit of the model structure on a fixed base, whereas stronger retrofit measures such as steel bracing were needed when soil-structure interaction was considered.