• Title/Summary/Keyword: Effective Flow Area

Search Result 466, Processing Time 0.026 seconds

A Study on the Within Wafer Non-uniformity of Oxide Film in CMP (CMP 패드 강성에 따른 산화막 불균일성(WIWNU)에 관한 연구)

  • Park, Ki-Hyun;Jung, Jae-Woo;Park, Boum-Young;Seo, Heon-Deok;Lee, Hyun-Seop;Jeong, Hae-Do
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.6
    • /
    • pp.521-526
    • /
    • 2005
  • Within wafer non-uniformity(WIWNU) improves as the stiffness of pad decrease. We designed the pad groove to study of pad stiffness on WIWNU in Chemical mechanical polishing(CMP) and measured the pad stiffness according to groove width. The groove influences effective pad stiffness although original mechanical properties of pad are unchanged by grooving. Also, it affects the flow of slurry that has an effect on the lubrication regime and polishing results. An Increase of the apparent contact area of pad by groove width results in decrease of effective pad stiffness. WIWNU and profile of removal tate improved as effective pad stiffness decreased. Because grooving the pad reduce its effective stiffness and it makes slurry distribution to be uniform. Futhermore, it ensures that pad conforms to wafer-scale flatness variability. By grooving the top pad, it is possible to reduce its stiffness and hence reduce WIWNU and edge effect.

A Study on the Improvement of the Water System in Domestic Boiler (가정용 보일러의 급탕시설 개선방안에 관한 연구)

  • Han, Gyu-Il;Park, Jong-Un
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.34 no.2
    • /
    • pp.200-211
    • /
    • 1998
  • Heat transfer performance improvement by fin and groovs is studied for condensation of R-11 on integral-fin tubes. Eight tubes with trapczodially shaped integral-fins having fin density from 748 to 1654fpm(fin per meter) and 10, 30 grooves are tested. A plain tube having the same diameter as the finned tubes is also used for comparison. R-11 condensates at saturation state of 32 $^{\circ}C$ on the outside tube surface coded by inside water flow. All of test data are taken at steady state. The heat transfer loop is used for testing singe long tubes and cooling is pumped from a storage tank through filters and folwmeters to the horizontal test section where it is heated by steam condensing on the outside of the tubes. The pressure drop across the test section is measured by menas pressure gauge and manometer. The results obtained in this study is as follows : 1. Based on inside diameter and nominal inside area, overall heat transfer coefficients of finned tube are enhanced up to 1.6 ~ 3.7 times that of a plain tube at a constant Reynolds number. 2. Friction factors are up to 1.6 ~ 2.1 times those of plain tubes. 3. The constant pumping power ratio for the low integral-fin tubes increase directly with the effective area to the nominal area ratio, and with the effective area diameter ratio. 4. A tube having a fin density of 1299fpm and 30 grooves has the best heat transfer performance.

  • PDF

Study of Determination in Measurement System for Safely Managing Debris-Flow (안전한 토석류 관리를 위한 계측기 선정에 관한 연구)

  • Min, Dae-Hong;Yoon, Hyung-Koo
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.3
    • /
    • pp.41-47
    • /
    • 2017
  • Recent studies have shown that there are various systems which can be used to monitor hazardous area in a debris flow location, but lack of methodological research on the exact location where each instrument should be installed has hindered the success of this systems. The objective of this study is to suggest the measurement system for monitoring debris-flow and propose the effective method to determine location of measurement system. Previously studied, from 1991 to 2015, were referred and the applied ratio of every instrument was investigated. The measurement information was divided into 8 categories including rainfall, debris-flow velocity, displacement, fluid pore pressure, ground vibration, image processing, impact force and peak flow depth. The result of this study revealed that the most applied instruments to be rain gauge and geophone for measuring average rainfall and ground vibration respectively. The Analytic Hierarchical Process (AHP) method was selected to determine installation location of instrument and the weighting factors were estimated through fine content, soil thickness, porosity, shear strength, elastic modulus, hydraulic conductivity and saturation. The soil thickness shows highest weights and the fine content relatively demonstrates lowest weights. The score of each position can be calculated through the weighting factors and the lowest score position can be judged as the weak point. The weak point denotes the easily affecting area and thus, the point is suitable for installing the measurement system. This study suggests a better method for safely managing the debris-flow through a precise location for installing measurement system.

Investigation on the In-Cylinder Flow of 5-Valve Gasoline Engine by Using Two Color PIV Method (이색 PIV 기술을 이용한 5밸브 가솔린엔진 연소실 내의 유동특성 분석)

  • Lee, Gi-Hyeong;U, Yeong-Wan;Park, Sang-Chan;Lee, Chang-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.238-244
    • /
    • 2002
  • A 5-valve(intake 3-valve) engine has been developed to increase engine performance. These engines have a high power caused by the decrease of inertia mass of an intake valve and the increase of intake effective area. In this study, in-cylinder flow patterns were visualized with laser sheet method and velocity profiles at near intake valves were inspected by using a two-color PIV. In addition, steady flow tests were performed to quantify tumble ratio of flow-fields generated by a tumble control valve(TCV). Experimental results of steady flow test show that the cure of tumble ratio in intake 3-valve engine farmed as a S shape with valve lift changes. This tendency is different from the one in intake 2-valve engine. Using laser sheet method and two color PIV method, we can find that the intake flow through upper valve increases and the velocity gradient also slightly increases as valve lift increases. From this study, the in-cylinder flow characteristics around intake valves were made clearly.

A cavitation performance prediction method for pumps: Part2-sensitivity and accuracy

  • Long, Yun;Zhang, Yan;Chen, Jianping;Zhu, Rongsheng;Wang, Dezhong
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3612-3624
    • /
    • 2021
  • At present, in the case of pump fast optimization, there is a problem of rapid, accurate and effective prediction of cavitation performance. In "A Cavitation Performance Prediction Method for Pumps PART1-Proposal and Feasibility" [1], a new cavitation performance prediction method is proposed, and the feasibility of this method is demonstrated in combination with experiments of a mixed flow pump. However, whether this method is applicable to vane pumps with different specific speeds and whether the prediction results of this method are accurate is still worthy of further study. Combined with the experimental results, the research evaluates the sensitivity and accuracy at different flow rates. For a certain operating condition, the method has better sensitivity to different flow rates. This is suitable for multi-parameter multi-objective optimization of pump impeller. For the test mixed flow pump, the method is more accurate when the area ratios are 13.718% and 13.826%. The cavitation vortex flow is obtained through high-speed camera, and the correlation between cavitation flow structure and cavitation performance is established to provide more scientific support for cavitation performance prediction. The method is not only suitable for cavitation performance prediction of the mixed flow pump, but also can be expanded to cavitation performance prediction of blade type hydraulic machinery, which will solve the problem of rapid prediction of hydraulic machinery cavitation performance.

Numerical Design of Auto-Catalyst Substrate for Improved Conversion Performance Using Radially Variable Cell Density (변환효율 향상을 위한 횡방향 가변 셀밀도법을 사용한 자동차용 촉매변환기의 수치적 설계)

  • Jeong, Su-Jin;Kim, U-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.12
    • /
    • pp.1596-1607
    • /
    • 2000
  • The optimal design of auto-catalyst needs a good compromise between the pressure drop and flow uniformity in the substrate. One of the effective methods to achieve this goal is to use the concept of radially variable cell density. But this method has not been examined its usefulness in terms of chemical behavior and conversion performance. In this work, two-dimensional performance prediction of catalyst coupled with turbulent reacting flow simulation has been used to evaluated the benefits of this method n the flow uniformity and conversion efficiency. The results showed that two cell combination of 93cpsc and 62 cpsc was the most effective for improved pressure drop and conversion efficiency due to balanced space velocity and efficient usage of geometric surface area of channels. It was also found that large temperature difference between the bricks in case that the edge of the frontal face of brick has too much lower cell density(less than 67% of cell density of the center of the brick). This study has also demonstrated that the present computational results show the better prediction accuracy in terms of CO, HC and NO conversion efficiencies compared to those of conventional 1-D adiabatic model by comparison with experimental results.

Potential Release of Environmental Flow through Irrigation Reservoir (농업용 저수지에서의 환경용수 방류 능력 평가)

  • Kim, Sang-Min;Kim, Sung-Jae;Kim, Yong-Wan;Park, Tae-Yang;Kim, Sung-Min;Park, Ki-Wook;Jang, Min-Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.6
    • /
    • pp.101-109
    • /
    • 2011
  • The purpose of this study was to establish the methodology for providing the environmental flows from irrigation reservoir. Reservoir water budget for study area was analyzed to simulate the water supply scenarios for environmental flows. Bonghyun and Hi reservoirs area, located in Gyeongnam, Gosung-gun, Hi-myeon, were selected for study watersheds and streams for this study. Reservoir operation was simulated to determine the envionmental flows supply amount from March to October with the constraint that environmental flow supply was restrained when the storage of reservoir were below the half or one-third of effective storage. The simulated results indicated that the supply of environmental flows with the amount of 200 ton/day and 600 ton/day resulted in up to 15 mm and 29 mm of runoff depth increase in the downstream, respectively. The effect of environmental flows supply from existing irrigation reservoir was not significant because the irrigation reservoir was not designed to supply the environmental flows. It is necessary to remodel the irrigation reservoir and develop the reservoir operation technique, to meet the need for the environmental flows.

A Study of the Combustion Characteristics Using a 2-valve Sl Optically Acessible Engine with SCV (SCV를 장착한 2밸브 Sl 가시화기관의 연소특성에 관한 연구)

  • Jeong, Gu-Seop;Jeon, Chung-Hwan;Jang, Yeong-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.12
    • /
    • pp.1692-1701
    • /
    • 2001
  • This study describes the combustion characteristics under various condition of air excess ratio and ignition timing in a 2-valve SI optically accessible engine with swirl control valve(SCV). It adapted three different types of SCV(open ratio 72.5%, 78%, 59%) to strengthen a swirl flow. Pressure data were acquired using pressure sensor to investigate the effect of swirl flow on combustion, and from these pressure data, IMEP(indicated mean effective pressure) and MFB(mass fraction burnt) were calculated to explain burn rate and flame speed. From acquired flame images, we inspected the flame propagation direction, flame area, and flame centroid. Flame propagation direction showed different tendency between with/without SCV, and flame area with SCV was faster and larger than that of conventional engine. Finally, the representative flame images at each crank angle were acquired by PDF method to verify flame growth process. It is found that strengthened swirl flow is more beneficial for faster and stable combustion.

Control effect and mechanism investigation on the horizontal flow-isolating plate for PI shaped bridge decks' VIV stability

  • Li, Ke;Qian, Guowei;Ge, Yaojun;Zhao, Lin;Di, Jin
    • Wind and Structures
    • /
    • v.28 no.2
    • /
    • pp.99-110
    • /
    • 2019
  • Vortex-Induced-Vibration (VIV) is one kind of the wind-induced vibrations, which may occur in the construction and operation period of bridges. This phenomenon can bring negative effects to the traffic safety or can cause bridge fatigue damage and should be eliminated or controlled within safe amplitudes.In the current VIV studies, one available mitigation countermeasure, the horizontal flow-isolating plate, shows satisfactory performance particularly in PI shaped bridge deck type. Details of the wind tunnel test are firstly presented to give an overall description of this appendage and its control effect. Then, the computational-fluid-dynamics(CFD) method is introduced to investigate the control mechanism, using two-dimensional Large-Eddy-Simulation to reproduce the VIV process. The Reynolds number of the cases involved in this paper ranges from $1{\times}10^5$ to $3{\times}10^5$, using the width of bridge deck as reference length. A field-filter technique and detailed analysis on wall pressure are used to give an intuitive demonstration of the changes brought by the horizontal flow-isolating plate. Results show that this aerodynamic appendage is equally effective in suppressing vertical and torsional VIV, indicating inspiring application prospect in similar PI shaped bridge decks.

Performance Tests on a Solar Water Heating System in Thermosyphonic Flow (열사이폰식 태양열 온수시스템의 성능실험)

  • Kim, Doo-Chun;Park, Seung-Duk
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.9 no.2
    • /
    • pp.93-103
    • /
    • 1980
  • A small domestic solar water heating system in thermosyphonic flow was tested in Seoul. The system consisted of four flat plate aluminium roll bond type collectors of total effective area $3.28m^2$ and a $280{\iota}$ storage tank. It was tilted $52^{\circ}$ relative to the horizon. And the collector plate, collector tube and storage tank were equiped with 14 thermocouples. As the results, the following facts were found; 1) To provide water at $55^{\circ}C$ for a family of four in Seoul, a collector area of $3-4m^2$ and a storage capacity of $180{\iota}- 200{\iota}$ are suggested. And this system can supply hot water at above $45^{\circ}C$ day about. 2) In the late afternoon hours, it might be advantageous to stop the flow in the system as heat losses to the environment increase unduly. 3) Without any hot water consumption throughout the day, water temperature distributions inside the storage tank was found almost linear. This indicates essentially no mixing inside the storage tank. 4) In case of a small domestic solar water heating system, it is better to employ a single transparent cover rather than double one.

  • PDF