• Title/Summary/Keyword: Effective Flow Area

Search Result 467, Processing Time 0.027 seconds

A Study on TOPMODEL Simulation for Soil Moisture Variation (TOPMODEL의 토양수분 변동성 모의에 관한 연구)

  • Kim, Jin-Hun;Bae, Deok-Hyo;Jang, Gi-Hyo;Jo, Cheon-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.1
    • /
    • pp.65-75
    • /
    • 2002
  • The objectives of this study are to analyse model-based soil moisture variations depending on model parameters m and $T_0$ and to evaluate the model performance for the simulation of soil moisture variations by the comparison of observed groundwater levels and model-driven soil moisture amounts and observed and simulated river discharges at the basin outlet. The selected study area is the Pyungchang IHP river basin with outlet at Sanganmi station and the summer flooding events during '94-'98 are used for the analysis. As a result, soil moisture holding capacity is increased according to increase the parameter m that represents effective groundwater depth. This phenomenon is especially dominant when higher m and $T_0$ values are used. The qualitative comparison of computed base flow and observed groundwater level shows that the base flow peaks are reasonably simulated and the decreasing limbs of hydrograph are mainly caused by base flows. It is concluded that TOPMODEL can be used effectively for simulating basin-averaged soil moisture variations in addition to river flow generations.

Research on Development of Farm Land of Gab River Basin(I) -Enlargement of Farm Land River-Site (갑천류역(甲川流域)의 농업개발(農業開發)에 관(關)한 조사연구(調査硏究)(I) -하천부지(河川敷地) 농지확대(農地擴大)를 중심(中心)으로)

  • Kang, Sin Up;Park, Hee Bum;Cho, Seung Seup;Ahn, Byong Gi;Kim, Moon Kyu
    • Korean Journal of Agricultural Science
    • /
    • v.2 no.1
    • /
    • pp.265-279
    • /
    • 1975
  • This study was conducted to investigate the development of Gab river-basin which was a part of the farm land enlargement to contribute to the increased production of food. The results were as follows; 1. Gab river has the upper stream which occupy 50 percent in moumtains and the mid-stream in the Daejeon city area, and the downstream in a field which is about 22.9 percent in which farming area per household is 0.82 ha., agricultural population is 76 percent except of Daejeon city. Also, urban enlargement of mid-stream basin and development of industrial area in the lower stream diminish farm land. Consequently, this area should be developed to farm land to increase farming size. 2. There is no possibility to develop farm land in mountains of which (64.9 percent) is forests and in midstream which was constructed river-improvement. But Weonjeong area and Yongcheon area will be effective area. 3. If river banks of Weonjeong area will make straight with cost of construction 195,000,000 won, bank length 6 km will be useless, water will flow smoothly, flood will be prevented, farm land will develop 21.66 ha in which rice will produce annually 81.698 M/T which is about 10,860,000 won. 4. This area has good conditions of development. that is, investment efficiency (B/C) is 1.47 more than 1.00. 5. This area is a multiple purpose development district. The reasons are that there are beautiful mountains and a reservoir to be expected to construct, so it will be a sight seeing district in the vicinity of Daejeon city. 6. If Honam railway double line and river straight construction had executed simultaneously, cost of construction 50,000,000 won would have saved.

  • PDF

An Improved LOS Analysis Method for Pedestrian Walkways Using Pedestrian Space (보행 점유공간을 이용한 보행자도로 서비스수준 분석방법론 개선 연구)

  • JUN, Sung Uk;SON, Yonug Tae
    • Journal of Korean Society of Transportation
    • /
    • v.34 no.2
    • /
    • pp.168-179
    • /
    • 2016
  • This study describes an improved model for estimating pedestrian LOS (Level of Service) by utilizing the space occupied by pedestrians. The method introduced the concept of conflict along the bi-directional pedestrian flow which enables calculating conflict area and average travel time in walking. Especially, the method incorporates the idea of generalized density concept which can consider effective walking area and pedestrian flow rates that might vary during the analysis period. After establishing methodology, adjustments of pedestrian LOS criteria in term of walking space occupied by pedestrians were performed. As a result, walking-occupied space at capacity level is 0.68 and corresponding pedestrian flow rate was calculated as 80 persons/min/m, while different pedestrian-occupied spaces were ordered to classify LOS at the points where the gradient changes. Furthermore, the statistical verification of service levels has shown that there is significant difference among all LOS categories at 5% significance level.

Reaction Path Modelling on Geochemical Evolution of Groundwater and Formation of Secondary Minerals in Water-Gneiss Reaction System (편마암-물 반응계에서 지하수의 지화학적 진화 및 이차광물 생성에 관한 반응경로 모델링)

  • 정찬호;김천수;김통권;김수진
    • Journal of the Mineralogical Society of Korea
    • /
    • v.10 no.1
    • /
    • pp.33-44
    • /
    • 1997
  • The reaction path of water-gneiss in 200m borehole at the Soorichi site of Yugu Myeon, Chungnam was simulated by the EQ3NR/EQ6 program. Mineral composition of borehole core and fracture-filling minerals, and chemical composition of groundwater was published by authors. In this study, chemical evolution of groundwater and formation of secondary minerals in water-gneiss system was modelled on the basis of published results. The surface water was used as a starting solution for reaction. Input parameters for modelling such as mineral assemblage and their volume percent, chemical composition of mineral phases, water/rock ratio reactive surface area, dissolution rates of mineral phases were determined by experimental measurement and model fit. EQ6 modelling of the reaction path in water-gneiss system has been carried out by a flow-centered flow through open system which can be considered as a suitable option for fracture flow of groundwater. The modelling results show that reaction time of 133 years is required to reach equilibrium state in water-gneiss system, and evolution of present groundwater will continue to pH 9.45 and higher na ion concentration. The secondary minerals formed from equeous phase are kaolinite, smectite, saponite, muscovite, mesolite, celadonite, microcline and calcite with uincreasing time. Modeling results are comparatively well fitted to pH and chemical composition of borehole groudwater, secondary minerals identified and tritium age of groundwater. The EQ6 modelling results are dependent on reliability of input parameters: water-rock ratio, effective reaction surface area and dissolution rates of mineral phases, which are difficult parameters to be measured.

  • PDF

Transient performance behaviour of the CRW type UAV propulsion system during flight mode transition considering valve operation (CRW형식 무인항공기 추진시스템의 밸브 작동을 고려한 비행모드 전환에 따른 천이 성능특성 연구)

  • Kong Chanduk;Park Jong-Ha;Yang Soo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.219-224
    • /
    • 2005
  • In order to investigate transient behaviour of the CRW(Canard Rotor Wing) type UAV(Uninhabited Aerial Vehicle) propulsion system during flight mode transition considering flow control valve operation, the propulsion system was modelled using SIMULINK commercial program. For transient simulation of the main engine system, the ICV(Inter-Component Volume) method was applied. The valve system is to control the gas flow of the rotary duct system and the main duct system, and the analysis was performed with an assumption that the total gas mass flow of the main engine is the same as summation of the rotary duct flow and the main duct flow, and with consideration of valve loss, flow rate and effective area in valve angle variation. The performance analysis was carried out during flight mode transitions from the rotary flight mode to the fixed wing flight mode and vice versa mode at altitude of 1Km, flight Mach number 0.1 and maximum engine rpm.

  • PDF

Reduction Effect of Nonpoint Source Pollutants and Drainage of Infiltration Grate Inlet (침투형 빗물받이의 배수 및 비점오염물질 저감 효과)

  • Lee, Wonyong;Lim, Bongsu;Park, Insung
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.4
    • /
    • pp.474-480
    • /
    • 2017
  • This study was to estimate the reduction effect of nonpoint source pollutants according to the rainfall intensity and drainage of infiltration grate inlet. Soil infiltration flow was measured on-site and SS load by the filter part was calculated by the experimental data in laboratory reactor test. Soil infiltration flow was measured to be about $1m^3/hr$ in soil condition saturated with water. The filter part of the infiltration grate inlet was a hydraulic equipment unhindered by soil infiltration on the bottom of the storage tank, because the infiltration flow was measured to be about $3m^3/hr$ continuously in the closing infiltration hole condition. Infiltration flow and SS load were over about $1m^3/hr$ and 1.71 kg according to laboratory results by the filter part using the artifical sample. Therefore, the above values could be presented as the limitted value to start the reduction of filtration effect. Reduction efficiencies of SS load by the filter part for the rainfall intensity were about 87 % at 5 mm/hr and about 61 % at 10 mm/hr in consideration of one infiltration grate inlet got the drainage area about $200m^2$. The reduction efficiency of nonpoint source pollutants was very effective in the first flush rainfall. However, the reduction efficiency by rainfall density was higher than by flow.

Characteristics of Entrainment Flow Rate in a Coanda Nozzle with or without Coaxial Contractor (코안다 노즐에서 중심 축소관 유무에 따른 유입량 특성)

  • Ha, Ji Soo;Shim, Sung Hoon
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.2
    • /
    • pp.21-27
    • /
    • 2014
  • A MILD(Moderate and Intense Low oxygen Dilution) combustion, which is effective in the reduction of NOx, is considerably affected by the recirculation flow rate of hot exhaust gas to the combustion furnace. The present study used a coanda nozzle for the exhaust gas recirculation in a MILD combustor. A numerical analysis was accomplished to elucidate the effect of exhaust gas entrainment toward the furnace with or without a coaxial contractor. The result of the present CFD analysis showed that the entrainment mass flow rate without a coaxial contractor had 18% larger than that with a coaxial contractor when the mixed gas outlet pressure was ambient pressure. On the other hand, if the outlet pressure increased, the mass flow rate with a contractor was larger than that without a contractor. It could be analysed by the entrainment driving force composed with the nozzle throat pressure, inlet and outlet pressures and flow cross sectional area.

Transient performance behaviour of the CRW type UAV propulsion system during flight mode transition considering valve operation (CRW형식 무인항공기 추진시스뎀의 밸브 작동을 고려한 비행모드 전환에 따른 천이 성능특성 연구)

  • Kong Changduk;Park Jongha;Yang Sooseok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.3
    • /
    • pp.127-132
    • /
    • 2005
  • In order to investigate transient behavior, of the CRW(Canard Rotor Wing) type UAV(Uninhabited Aerial Vehicle) propulsion system during flight mode transition considering flow control valve operation, the propulsion system was modelled using SIMULINK commercial program. The valve system is to control the gas flow of the rotary duct system and the main duct system, and the analysis was performed with an assumption that the total gas mass flow of the main engine is the same as summation of the rotary duct flow and the main duct flow, and with consideration of valve loss, flow rate and effective area in valve angle variation. The performance analysis was carried out during flight mode transitions from the rotary flight mode to the fixed wing flight mode and vice versa mode at altitude of 1km, flight Mach number 0.1 and maximum engine rpm.

Prediction of Residual Layer Thickness of Large-area UV Imprinting Process (대면적 UV 임프린팅 공정에서 잔류층 두께 예측)

  • Kim, Kug Weon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.2
    • /
    • pp.79-84
    • /
    • 2013
  • Nanoimprint lithography (NIL) is the next generation photolithography process in which the photoresist is dispensed onto the substrate in its liquid form and then imprinted and cured into a desired pattern instead of using traditional optical system. There have been considerable attentions on NIL due to its potential abilities that enable cost-effective and high-throughput nanofabrication to the display device and semiconductor industry. Although one of the current major research trends of NIL is large-area patterning, the technical difficulties to keep the uniformity of the residual layer become severer as the imprinting area increases more and more. In this paper, with the rolling type imprinting process, a mold, placed upon the $2^{nd}$ generation TFT-LCD glass sized substrate($370{\times}470mm^2$), is rolled by a rubber roller to achieve a uniform residual layer. The prediction of residual layer thickness of the photoresist by rolling of the rubber roller is crucial to design the rolling type imprinting process, determine the rubber roller operation conditions-mpressing force & feeding speed, operate smoothly the following etching process, and so forth. First, using the elasticity theory of contact problem and the empirical equation of rubber hardness, the contact length between rubber roller and mold is calculated with consideration of the shape and hardness of rubber roller and the pressing force to rubber roller. Next, using the squeeze flow theory to photoresist flow, the residual layer thickness of the photoresist is calculated with information of the viscosity and initial layer thickness of photoresist, the shape of mold pattern, feeding speed of rubber roller, and the contact length between rubber roller and mold previously calculated. Last, the effects of rubber roller operation conditions, impressing force & feeding speed, on the residual layer thickness are analyzed with consideration of the shape and hardness of rubber roller.

Evaluation of Sediment Yield using Area-weighted Measured Slope and Slope Length at HeaAn Myeon Watershed (실측 경사장 및 경사도를 고려한 양구 해안면 유역의 유사량 평가)

  • Yoo, Dongseon;Kim, Ki-Sung;Jang, Won Seok;Jun, Mansig;Yang, Jae E.;Kim, Seong Chul;Ahn, Jaehon;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.5
    • /
    • pp.569-580
    • /
    • 2008
  • In this study, area-weighted slope and slope length module, considering measured field slope and slope length of the agricultural fields within the subwatershed, was developed using the ArcView Avenue programming to reflect the field topography of the Soil and Water Assessment Tool (SWAT) HRU in simulating the hydrology and water quality. Flow and sediment yield estimated values of the SWAT were compared with and without applying area-weighted slope and slope length module, developed in this study. There was 103% increases in estimated sediment with area-weighted slope and slope length module for the study watershed. The soil erosion and sediment yield from only agricultural field in Hae-an watershed was also assessed. There are 111% increase in estimated soil erosion and 112% increase in estimated sediment by applying area-weighted slope and slope length module. This study shows that the area-weighted slope and slope length module needs to be utilized in estimating the HRU field slope and slope length for accurate estimation of soil erosion and nonponit source pollutant modeling with the SWAT although it is not feasible to measure topographic information for every agricultural fields within the watershed. The area-weighted slope and slope length module can be used in identifying soil erosion hot spot areas for developing cost effective and efficient soil erosion management practices.