• Title/Summary/Keyword: Effect-Site Concentration

Search Result 356, Processing Time 0.034 seconds

Monitoring for Change of Soil Characteristics by repeated Organic Supply of Comport and Green Manures in Newly reclaimed Organic Upland Field (신규 개간 유기농경지에서 가축분 퇴비와 녹비작물 연용에 따른 밭 토양의 이화학적 특성 변화 모니터링)

  • Ok, Jung-Hun;Cho, Jung-Lai;Lee, Byung-Mo;An, Nan-Hee;Shin, Jae-Hoon
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.4
    • /
    • pp.813-827
    • /
    • 2015
  • This study was conducted to evaluate the effect of organic inputs on soil properties in a newly reclaimed organic soils. The soil of the experiment site was very low in soil fertility and the physico-chemical properties were poor. Several organic input treatments with different source of nutrient were placed, including compost in combination with green manures for organic agricultural practices, chemical fertilizers for conventional agricultural practices, and control without fertilizer. The experiment was conducted with continuous cropping system during 3 years. The chemical properties concentration in compost+green manure treatment was increased continually compare to control and chemical fertilizer treatment, and closed to the recommended rate of fertilizer. The organic matter value for compost+green manure treatment was increased from 0.86~0.96% to 2.00~2.29% by continuous nutrient supply of compost and green manure. However, further investigation on increasing of organic matter value for 3 years is necessary to monitor carefully during the long-term because it will help to clarify the all mechanisms of organic matter on organic input application way. The available phosphate value for compost+green manure treatment was generally increased from 21.9~27.1 mg/kg to 182.0~394.1 mg/kg. In case of exchange cation, the concentration for compost+green manure treatment was increased during 2 years within the range to the recommended rate of fertilizer, however, it is expected to cause a rather over supply for 3 years.

Uncertainty of Discharge-SS Relationship Used for Turbid Flow Modeling (탁수모델링에 사용하는 유량-SS 관계의 불확실성)

  • Chung, Se-Woong;Lee, Jung-Hyun;Lee, Heung-Soo;Maeng, Seung-Jin
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.12
    • /
    • pp.991-1000
    • /
    • 2011
  • The relationship between discharge (Q) and suspended sediment (SS) concentration often is used for the estimation of inflow SS concentration in reservoir turbidity modeling in the absence of actual measurements. The power function, SS=aQb, is the most commonly used empirical relation to determine the SS load assuming the SS flux is controlled by variations of discharge. However, Q-SS relation typically is site specific and can vary depending on the season of the year. In addition, the relation sometimes shows hysteresis during rising limb and falling limb for an event hydrograph. The objective of this study was to examine the hysteresis of Q-SS relationships through continuous field measurements during flood events at inflow rivers of Yongdam Reservoir and Soyang Reservoir, and to analyze its effect on the bias of SS load estimation. The results confirmed that Q-SS relations display a high degree of scatter and clock-wise hysteresis during flood events, and higher SS concentrations were observed during rising limb than falling limb at the same discharge. The hysteresis caused significant bias and underestimation of SS loading to the reservoirs when the power function is used, which is important consideration in turbidity modeling for the reservoirs. As an alternative of Q-SS relation, turbidity-SS relation is suggested. The turbidity-SS relations showed less variations and dramatically reduced the bias with observed SS loading. Therefore, a real-time monitoring of inflow turbidity is necessary to better estimate of SS influx to the reservoirs and enhance the reliability of reservoir turbidity modeling.

A Plot Scale Experiment to Assess the NPS Reduction of Sediment Trap for Non-irrigated Cropland (침사구의 밭 비점오염 저감효과 평가를 위한 포장실험 연구)

  • Park, Tae-Yang;Kim, Sung-Jae;Jang, Jeong-Ryeol;Choi, Kang-Won;Kim, Sang-Min
    • Journal of agriculture & life science
    • /
    • v.45 no.5
    • /
    • pp.97-103
    • /
    • 2011
  • The purpose of this study was to analyze the pollutant reduction effect for non-irrigated crop land by nonpoint source pollution control. For a field scale monitoring, 6 plots (5m width and 22m length) and 3 sediment traps were installed. At the outlet of each plot, the stage gauges were installed for runoff monitoring. For a rainfall monitoring, tipping bucket rain gage was installed within the experiment site. Through the artificial irrigation, runoff from the plots were monitored. The SS, TOC, T-N, T-P, COD, NTU of sampled water were analyzed by standard methods. The SS, TOC, T-N, T-P, COD, NTU concentration of initial runoff were 15.00, 1.54, 5.27, 0.07, 4.72, 0.45mg/L, respectively. Four hours later than the initial runoff, the concentration was changed to 1.00, 0.94, 4.06, 0.01, 0.60, 0.33 mg/L, respectively. As a result of artificial irrigation, three out of four sediment traps were filled with runoff water from the experimental plots. One sediment trap was not filled with runoff water because the artificial irrigation was not supplied for two experimental plots. The stage of sediment traps were gradually lowered. However, the water quality didn't showed a decrease trend as the stage went down because the suspended solid was not equally collected during the water sampling.

Effects of Thermal Wastewater Effluent and Hydrogen Ion Potential (pH) on Water Quality and Periphyton Biomass in a Small Stream (Buso) of Pocheon Area, Korea (포천지역 계류 (부소천)의 수질과 부착조류 생물량에 온배수와 수소이온농도 (pH) 영향)

  • Jeon, Gyeonghye;Eum, Hyun Soo;Jung, Jinho;Hwang, Soon-Jin;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.1
    • /
    • pp.96-115
    • /
    • 2017
  • Understanding effects of thermal pollution and acidification has long been a concern of aquatic ecologists, but it remains largely unknown in Korea. This study was performed to elucidate the effects of thermal wastewater effluent (TWE) and acid rain on water quality and attached algae in a small mountain stream, the Buso Stream, a tributary located in the Hantan River basin. A total of five study sites were selected in the upstream area including the inflowing point of hot-spring wastewater (HSW), one upstream site (BSU), and three sites below thermal effluent merged into the stream (1 m, 10 m and 300 m for BSD1, BSD2, and BSD3, respectively). Field surveys and laboratory analyses were carried out every month from December 2015 to September 2016. Water temperature ranged $1.7{\sim}28.8^{\circ}C$ with a mean of $15.0^{\circ}C$ among all sites. Due to the effect of thermal effluent, water temperature at HSW site was sustained at high level during the study period from $17.5^{\circ}C$ (January) to $28.8^{\circ}C$ (September) with a mean of $24.2{\pm}3.7^{\circ}C$, which was significantly higher than other sites. Thermal wastewater effluent also brought in high concentration of nutrients(N, P). The effect of TWE was particularly apparent during dry season and low temperature period (December~March). Temperature effect of TWE did not last toward downstream, while nutrient effect seemed to maintain in longer distance. pH ranged 5.1~8.4 with a mean of 6.9 among all sites during the study period. The pH decrease was attributed to seasonal acid rain and snow fall, and their effects was identified by acidophilic diatoms dominated mainly by Eunotia pectinalis and Tabellaria flocculosa during March and August. These findings indicated that water quality and periphyton assemblages in the upstream region of Buso Stream were affected by thermal pollution, eutrophication, and acidification, and their confounding effects were seasonally variable.

Vertical Profiles and Assessment of Trace Metals in Sediment Cores From Outer Sea of Lake Shihwa, Korea (시화호 외측 해역 주상 퇴적물 내 미량금속 수직분포 특성 및 오염도 평가)

  • Ra, Kongtae;Kim, Joung-Keun;Kim, Eun-Soo;Kim, Kyung-Tae;Lee, Jung-Moo;Kim, Eu-Yeol
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.2
    • /
    • pp.71-81
    • /
    • 2013
  • Trace metal concentration in sediment cores from the outer sea of Lake Shihwa were determined to study the vertical profiles of metal concentrations and to evaluate the levels of metal contamination. Sediment pollution assessment was carried out using enrichment factor (EF) and geo-accumulation index (Igeo). The mean concentration of metals were 58.8 mg/kg for Cr, 10.3 mg/kg for Co, 22.8 mg/kg for Ni, 18.1 mg/kg for Cu, 74.0 mg/kg for Zn, 6.75 mg/kg for As, 0.14 mg/kg for Cd, 27.4 mg/kg for Pb and 0.026 mg/kg for Hg, respectively. The mean EF values for Cu, Zn, As, Cd and Hg were greater than 1.5 in sediment cores, indicating that these metals in sediments are slightly enriched by anthropogenic activities. The geo-accumulation index (Igeo) suggested unpolluted status for metals of sediments collected from outer see of Lake Shihwa. Igeo values for Cu and Hg nearby LNG station (site C, D, E) ranged from 1 to 2, indicating moderately to unpolluted pollution status for those metals. Even if the higher concentrations of trace metals nearby LNG station were observed, there is significantly positive relationship between Al and trace metals. Thus, the sediment grain size plays an important roles in influencing the distribution of trace metals in sediment cores from the outer sea of Lake Shihwa. Based on the comparison with sediment quality guidelines such as threshold effect level and probable effect level in Korea, the concentration of metals in sediments from outer sea of Lake Shihwa are likely to result in no harmful effects on sediment-dwelling organisms.

Treatment of Contaminated Sediment for Water Quality Improvement of Small-scale Reservoir (소하천형 호수의 수질개선을 위한 퇴적저니 처리방안 연구)

  • 배우근;이창수;정진욱;최동호
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.4
    • /
    • pp.31-39
    • /
    • 2002
  • Pollutants from industry, mining, agriculture, and other sources have contaminated sediments in many surface water bodies. Sediment contamination poses a severe threat to human health and environment because many toxic contaminants that are barely detectable in the water column can accumulate in sediments at much higher levels. The purpose of this study was to make optimal treatment and disposal plan o( sediment for water quality improvement in small-scale resevoir based on an evaluation of degree of contamination. The degree of contamination were investigated for 23 samples of 9 site at different depth of sediment in small-scale J river. Results for analysis of contaminated sediments were observed that copper concentration of 4 samples were higher than the regulation of hazardous waste (3 mg/L) and that of all samples were exceeded soil pollution warning levels for agricultural areas. Lead and mercury concentration of all samples were detected below both regulations. Necessary of sediment dredge was evaluated for organic matter and nutrient through standard levels of Paldang lake and the lower Han river in Korea and Tokyo bay and Yokohama bay in Japan. The degree of contamination for organic matter and nutrient was not serious. Compared standard levels of Japan, America, and Canada for heavy metal, contaminated sediment was concluded as lowest effect level or limit of tolerance level because standard levels of America and Canada was established worst effect of benthic organisms. The optimal treatment method of sediment contained heavy metal was cement-based solidification/stabilization to prevent heavy metal leaching.

The Effect of Freshwater Inflow on the Spatio-temporal Variation of water Qualify of Yeongil Bay (영일만 수질의 시ㆍ공간 변동에 미치는 담수유입의 효과)

  • 김영숙;김영섭
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.1
    • /
    • pp.57-65
    • /
    • 2004
  • In order to determine the effect of fresh water inflow from the Heongsan river on the changes of water quality in the Yeongil Bay (Korea), the seasonal changes of water temperature, salinity, chemical oxygen demand (COD), dissolved inorganic nitrogen(DIN) and phosphate phosphorus ($PO_4$-P) concentrations were examined using the data set obtained five fixed points of Yeongil Bay from 1998 to 2000. The distributions and changes of COD and concentrations of total inorganic phosphorous (TIP) and nitrogen (TIN) at three points Heongsan river, were also compared with those of Yeongil Bay. Based on the correlations of DIN and $PO_4$-P, it was found that the inflow of freshwater affected on the water quality of Yeongil Bay. Such a complicacy was confirmed by the prominent differences in n few water quality measures between Site 1(the innermost area) and Site 5 (the mouth of the bay). The negative correlations in $\Delta N/\Delta P $ at sites 1, 2 and 3 of the inner-part of the bay also indicated a large effect of freshwater inflow on the water quality of the bay. The extremely low atomic ratio of an average of 6.4 in $\Delta N/\Delta P $ compared to the Redfild ratio suggested that the DIN was depleted in the overall bay system. In contrast, it was inferred that the excessive PO$_4$-P concentration was due to the inflow of freshwater from the Heongsan river.

Biological Toxicity Assessment of Sediment at an Ocean Dumping Site in Korea (폐기물 배출해역 퇴적물의 생물학적 독성평가 연구)

  • Seok, Hyeong Ju;Kim, Young Ryun;Kim, Tae Won;Hwang, Choul-Hee;Son, Min Ho;Choi, Ki-young;Kim, Chang-joon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • The effect of sediments in a waste dumping area on marine organisms was evaluated using sediment toxicity tests with a benthic amphipod (Monocorophium acherusicum) and bioluminescent bacterium (Vibrio fischeri) in accordance with the Korean Standard Method for Marine Wastes (KSMMW). Nine sites in the East Sea-Byeong, East Sea-Jeong, and Yellow Sea-Byeong areas were sampled from 2016 to 2019. The test results showed that the relative average survival rate (benthic amphipods) and relative luminescence inhibition rate (luminescent bacteria) were below 30%, which were judged to be "non-toxic." However, in the t-test, a total of 12 benthic amphipod samples (6, 1, 1, and 4 in 2016, 2017, 2018, and 2019, respectively) were significantly different (p<0.05) from the control samples. To identify the source of toxicity on benthic amphipods, a simple linear regression analysis was performed between the levels of eight heavy metals (Cr, As, Ni, Cd, Cu, Pb, Zn, and Hg) in sediments and the relative average survival rate. The results indicated that Cr had the highest contribution to the toxicity of benthic amphipods (p = 0.000, R2 = 0.355). In addition, Cr was detected at the highest concentration at the DB-85 station and exceeded the Marine Environment Standards every year. Although the sediments were determined as "not toxic" according to the ecotoxicity criteria of the KSMMW, the results of the statistical significance tests and toxicity identification evaluation indicated that the toxic effect was not acceptable. Therefore, revising the criteria for determining the toxic effect by deriving a reference value through quantitative risk assessment using species sensitivity distribution curves is necessary in the future.

Field Applicability Evaluation Using Effective Microorganism Brewing Cycle for Contaminated Soil in Water Retention Basin (복합발효미생물을 이용한 하천유수지 오염토의 현장적용성 평가)

  • Shin, Eunchul;Jung, Minkyo;Kim, Kyeongsig;Kang, Jeongku
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.11
    • /
    • pp.35-43
    • /
    • 2016
  • In this study, by using a Effective Microorganisms Brewing Cycle, it confirmed the purification effect of pollutants that are adsorbed on the basins stench removal and retarding soil. On the basis of on-site application test, a soil decontamination system will be suggested. Using a Effective Microorganisms Brewing Cycle, the odor concentration is reduced 2.5 times than that of natural purification treatment method. It was measured and found that the quality of the pore water discharged from the soil is improved. In addition, it was found that a composite of copper and lead with the fermentation microorganisms adsorbed on soil particles from the surface of the stirred experiments lagoon mixed soil is reduced to 65% and 66%, respectively, The TPH organic component was confirmed that the reduction effect of 85%. Restoration of reservoir contaminated soils using the effective microorganism brewing cycle needs to be more developed and implemented as a long-term purification system. This study may be a good reference of developing more complete microorganism brewing system which will efficiently reduce the odor and soil contamination based on optimal stirring and mixing ratio of the compound solutions and contaminated soils in reservoir.

The Effects of the Attractiveness of an Internet Shopping Mall and Flow on Affective Commitment

  • Kang, Sung-Ju;Kim, Jae-Yeong;Park, Young-Kyun
    • Journal of Distribution Science
    • /
    • v.9 no.4
    • /
    • pp.29-42
    • /
    • 2011
  • With the many advantages of the internet, online shopping has become one of the fastest growing types of retail businesses. However, internet-based firms are much more firmly required to retain existing customers rather than secure new ones, and to make them revisit the site by strengthening trust and loyalty, thereby improving profits and outrivaling competitors. Commitment is an essential part of successful long-term relationships between buyers and sellers. Although commitments by both parties in an exchange can provide the foundation for the development of relational social norms, disproportionate commitments can lead to opportunism by the less committed partner. Moreover, flow, which is characterized by intense concentration and enjoyment, was found to be significantly linked with exploratory use behavior, which in turn was linked to the extent of computer use. The level of flow was, itself, determined by the individual's sense of being in control, and the level of challenge perceived in maneuvering a website. Website attractiveness goes hand in hand with the attractiveness of an internet shopping mall, and it can be conceptualized as the persuasive effectiveness of a message by the use of familiarity, favor, similarity, etc. It occurs when information receivers try to achieve self-satisfaction when they actually or emotionally identify themselves with an information source. This study investigates the relationship between the perceived system characteristics of an internet shopping mall and the loyalty of online consumers, and it examines how perceived website attractiveness and flow play mediating roles between the perceived system characteristics of an internet shopping mall and the affective commitment in the context of a clothes internet shopping mall. For these purposes, a structural model comprising several variables was developed. That model was tested with an analysis of moment structure (AMOS) using data from respondents who had purchased clothing through the internet during the past three months. In this model, the perceived system characteristics of an internet shopping mall, such as familiarity, reputation, uniqueness, positive emotions, self-efficacy, and interactivity, were proposed to affect the website's attractiveness and flow, and lead to a higher affective commitment over time. Thus, the perceived website attractiveness and flow were proposed as core mediating variables between perceived system characteristics and affective commitment. The results of a reliability test using Cronbach's Alpha, and a confirmatory factor analysis warranted using unidimensionality for the measures for each construct. In addition, the nomological validity of the measures was warranted from the results of a correlation analysis. The results of empirical analyses indicated that systematic attributes resulting in website attractiveness and user's characteristics, thereby triggering customers' flow, play a crucial role in inducing customers' affective commitment, and a user's characteristics are twice as important as systematic attributes in this study. Moreover, familiarity, reputation, and uniqueness all have a significant effect on website attractiveness, and the research showed that uniqueness took the first place, and that familiarity and reputation followed in order of magnitude. The fact that reputation was not the most important factor that affects the attractiveness of an internet shopping mall, with uniqueness or familiarity having a greater impact, suggests much deeper implications. Finally, positive emotion, self-efficacy, and interactivity all have a significant effect on customers' flow. In particular, the fact that positive emotion, compared to self-efficacy or interactivity, has much more impact on flow is very suggestive.

  • PDF