• Title/Summary/Keyword: Effect of temperature

Search Result 20,246, Processing Time 0.054 seconds

A study on the improvement of distribution system by overseas agricultural investment (해외농업투자에 따른 유통체계 개선방안에 관한 연구)

  • Sun, Il-Suck;Lee, Dong-Ok
    • Journal of Distribution Science
    • /
    • v.8 no.3
    • /
    • pp.17-26
    • /
    • 2010
  • Recently concerns have been raised due to the unbalanced supply of crops: the price of crops has been unstable and at one point the price went up so high that the word Agflation(agriculture+ inflation) was coined. Korea, in particular, is a small-sized country and needs to secure the stable supply of crops by investing in the produce importation at a national level. Investment in foreign produce importation is becoming more important as a measure for sufficient supply of crops, limited supply of domestic crops, weakened farming conditions worldwide, as well as recent changes in the use of crops due to the development of bio-fuels, influence of carbon emission on crops, the price increase in crops, and influx of foreign hot money. However, there are many problems with investing in foreign produce importation: lack of support from the government; lack of farming information and technology; difficulty in securing the capital; no immediate pay-off from the investment and insufficient management. Although foreign produce is originally more price-competitive than domestic produce, it loses its competiveness in the process of importation (due to high tariffs) and poor distribution system, which makes it difficult to sell in Korea. Therefore, investment in foreign produce importation is being questioned for feasibility; to make it possible, foreign produce must maintain the price-competitiveness. Especially, harvest of agricultural products depends on natural and geographical conditions of each country and those products have indigenous properties, so distribution system according to import and export of agricultural products should be treated more carefully than that of other industries. Distribution costs are differentiated into each item and include cost of sorting and wrapping, cost of wrapping materials, cost of domestic transport, cost of international transport and cost of clearing customs for import and export. So transporting and storing agricultural products generates considerable costs compared with other products. Also, due to upgrade of dietary life, needs for stability, taste and visible quality toward food including agricultural products are being raised and wrong way of storage causes decomposition of food and loss of freshness, making the storage more difficult than that in room temperature, so storage and transport in distribution of agricultural products needs specialty. In addition, because lack of specialty in distribution and circulation such as storage and wrapping does not solve limit factors in distance, the distribution and circulation has been limited to a form of import and export within short-distant region. Therefore, need for distribution out-sourcing which can satisfy specialty in managing distribution and circulation and it is needed to establish more effective distribution system. However, existing distribution system of agricultural products is exposed to various problems including problems in distribution channel, making distribution and strategy for distribution and those problems are as follows. First, in case of investment in overseas agricultural industry, stable supply of the products is difficult because areas of production are dispersed widely and influenced by outer factors due to including overseas distribution channels. Also, at the aspect of quality, standardization of products is difficult, distribution system is quite complicated and unreasonable due to long distribution channels according to international trade and financial and institutional support is not enough. Especially, there are quite a lot of ineffective factors including multi level distribution process, dramatic gap between production cost and customer's cost, lack of physical distribution facilities and difficulties in storage and transport due to lack of wrapping containers. Besides, because import and export of agricultural products has been manages under the company's own distribution according to transaction contract between manufacturers and exporting company, efficiency is low due to excessive investment in fixed costs and lack of specialty in dealing with agricultural products causes fall of value of products, showing the limit to lose price-competitiveness. Especially, because lack of specialty in distribution and circulation such as storage and wrapping does not solve limit factors in distance, the distribution and circulation has been limited to a form of import and export within short-distant region. Therefore, need for distribution out-sourcing which can satisfy specialty in managing distribution and circulation and it is needed to establish more effective distribution system. Second, among tangible and intangible services which promote the efficiency of the whole distribution, a function building distribution environment which includes distribution information, system for standard and inspection, distribution finance, system for diversification of risks, education and training, distribution administration and tax system is wanted. In general, such a function building distribution environment is difficult to be changed and supplement innovatively because its effect compared with investment does not appear immediately despite of its necessity. Especially, in case of distribution of agricultural products, as a function of collecting and distributing is performed individually through various channels, the importance of distribution information and standardization is getting more focus due to the problem of repetition of work and lack of specialty. Also, efficient management of distribution is quite difficult due to lack of professionals in distribution, so support to professional education is needed. Third, though effort to keep self-sufficiency ratio of staple food, rice is regarded as important at the government level, level of dependency on overseas of others crops is high. Therefore, plan for stable securing food resources aside from staple food is also necessary. Especially, governmental organizations of agricultural products distribution in Korea are production-centered and have unreasonable structure whose function at the aspect of distribution and consumption is quite insufficient. And development of new distribution channels which can deal with changes in distribution environment and they do not achieve actual results of strategy for distribution due to non-positive strategy for price distribution. That is, it implies the possibility that base for supply will become vulnerable because it does not mediate appropriate interests on total distribution channels such as manufacturers, wholesale dealers and vendors by emphasizing consumer protection excessively in the distribution of agricultural products. Therefore, this study examined fundamental concept and actual situation for our investment to overseas agriculture, drew necessities, considerations, problems, etc. of overseas agricultural investment and suggested improvements at the level of distribution for price competitiveness of agricultural products cultivated in overseas under five aspects; government's indirect support, distribution's modernization and distribution information function's strengthening, government's political support for distribution facility, transportation route, load and unloading works' improvement, price competitiveness' securing, professional manpower's cultivation by education and training, etc. Here are some suggestions for foreign produce importation. First, the government should conduct a survey on the current distribution channels and analyze the situation to establish a measure for long-term development plans. By providing each agricultural area with a guideline for planning appropriate production of crops, the government can help farmers be ready for importation, and prevent them from producing same crops all at the same time. Government can sign an MOU with the foreign government and promote the importation so that the development of agricultural resources can be stable and steady. Second, the government can establish a strategy for an effective distribution system by providing farmers and agriculture-related workers with the distribution information such as price, production, demand, market structure and location, feature of each crop, and etc. In order for such distribution system to become feasible, the government needs to reconstruct the current distribution system, designate a public organization for providing distribution information and set the criteria for level of produce quality, trade units, and package units. Third, the government should provide financial support and a policy to seek an efficient distribution channel for foreign produce to be delivered fresh: the government should expand distribution facilities (for selecting, packaging, storing, and processing) and transportation vehicles while modernizing old facilities. There should be another policy to improve the efficiency of unloading, and to lower the cost of distribution. Fourth, it is necessary to enact a new law covering exceptional cases for importing produce in order to maintain the price competitiveness; currently the high tariffs is keeping the imported produce from being distributed domestically. However, the new adjustment should be made carefully within the WTO regulations since it can create a problem from giving preferential tariffs. The government can also simplify the distribution channels in order to reduce the cost in the distribution process. Fifth, the government should educate distributors to raise the efficiency and to modernize the distribution system. It is necessary to develop human resources by educating people regarding the foreign agricultural environment, the produce quality, management skills, and by introducing some successful cases in advanced countries.

  • PDF

A Study on the Dimensions, Surface Area and Volume of Grains (곡립(穀粒)의 치수, 표면적(表面積) 및 체적(體積)에 관(關)한 연구(硏究))

  • Park, Jong Min;Kim, Man Soo
    • Korean Journal of Agricultural Science
    • /
    • v.16 no.1
    • /
    • pp.84-101
    • /
    • 1989
  • An accurate measurement of size, surface area and volume of agricultural products is essential in many engineering operations such as handling and sorting, and in heat transfer studies on heating and cooling processes. Little information is available on these properties due to their irregular shape, and moreover very little information on the rough rice, soybean, barley, and wheat has been published. Physical dimensions of grain, such as length, width, thickness, surface area, and volume vary according to the variety, environmental conditions, temperature, and moisture content. Especially, recent research has emphasized on the variation of these properties with the important factors such as moisture content. The objectives of this study were to determine physical dimensions such as length, width and thickness, surface area and volume of the rough rice, soybean, barley, and wheat as a function of moisture content, to investigate the effect of moisture content on the properties, and to develop exponential equations to predict the surface area and the volume of the grains as a function of physical dimensions. The varieties of the rough rice used in this study were Akibare, Milyang 15, Seomjin, Samkang, Chilseong, and Yongmun, as a soybean sample Jangyeobkong and Hwangkeumkong, as a barley sample Olbori and Salbori, and as a wheat sample Eunpa and Guru were selected, respectively. The physical properties of the grain samples were determined at four levels of moisture content and ten or fifteen replications were run at each moisture content level and each variety. The results of this study are summarized as follows; 1. In comparison of the surface area and the volume of the 0.0375m diameter-sphere measured in this study with the calculated values by the formula the percent error between them showed least values of 0.65% and 0.77% at the rotational degree interval of 15 degree respectively. 2. The statistical test(t-test) results of the physical properties between the types of rough rice, and between the varieties of soybean and wheat indicated that there were significant difference at the 5% level between them. 3. The physical dimensions varied linearly with the moisture content, and the ratios of length to thickness (L/T) and of width to thickness (W/T) in rough rice decreased with increase of moisture content, while increased in soybean, but uniform tendency of the ratios in barley and wheat was not shown. In all of the sample grains except Olbori, sphericity decreased with increase of moisture content. 4. Over the experimental moisture levels, the surface area and the volume were in the ranges of about $45{\sim}51{\times}10^{-6}m^2$, $25{\sim}30{\times}10^{-9}m^3$ for Japonica-type rough rice, about $42{\sim}47{\times}10^{-6}m^2$, $21{\sim}26{\times}10^{-9}m^3$ for Indica${\times}$Japonica type rough rice, about $188{\sim}200{\times}10^{-6}m^2$, $277{\sim}300{\times}10^{-9}m^3$ for Jangyeobkong, about $180{\sim}201{\times}10^{-6}m^2$, $190{\sim}253{\times}10^{-9}m^3$ for Hwangkeumkong, about $60{\sim}69{\times}10^{-6}m^2$, $36{\sim}45{\times}10^{-9}m^3$ for Covered barley, about $47{\sim}60{\times}10^{-6}m^2$, $22{\sim}28{\times}10^{-9}m^3$ for Naked barley, about $51{\sim}20{\times}10^{-6}m^2$, $23{\sim}31{\times}10^{-9}m^3$ for Eunpamill, and about $57{\sim}69{\times}10^{-6}m^2$, $27{\sim}34{\times}10^{-9}m^3$ for Gurumill, respectively. 5. The increasing rate of surface area and volume with increase of moisture content was higher in soybean than other sample grains, and that of Japonica-type was slightly higher than Indica${\times}$Japonica type in rough rice. 6. The regression equations of physical dimensions, surface area and volume were developed as a function of moisture content, the exponential equations of surface area and volume were also developed as a function of physical dimensions, and the regression equations of surface area were also developed as a function of volume in all grain samples.

  • PDF

Studies on Neck Blast Infection of Rice Plant (벼 이삭목도열병(病)의 감염(感染)에 관(關)한 연구(硏究))

  • Kim, Hong Gi;Park, Jong Seong
    • Korean Journal of Agricultural Science
    • /
    • v.12 no.2
    • /
    • pp.206-241
    • /
    • 1985
  • Attempts to search infection period, infection speed in the tissue of neck blast of rice plant, location of inoculum source and effects of several conditions about the leaf sheath of rice plants for neck blast incidence have been made. 1. The most infectious period for neck blast incidence was the booting stage just before heading date, and most of necks have been infected during the booting stage and on heading date. But $Indica{\times}Japonica$ hybrid varieties had shown always high possibility for infection after booting stage. 2. Incubation period for neck blast of rice plants under natural conditions had rather a long period ranging from 10 to 22 days. Under artificial inoculation condition incubation period in the young panicle was shorter than in the old panicle. Panicles that emerged from the sheath of flag leaf had long incubation period, with a low infection rate and they also shown slow infection speed in the tissue. 3. Considering the incubation period of neck blast of rice plant, we assumed that the most effective application periods of chemicals are 5-10 days for immediate effective chemicals and 10-15 days for slow effective chemicals before heading. 4. Infiltration of conidia into the leaf sheath of rice plant carried out by saturation effect with water through the suture of the upper three leaves. The number of conidia observed in the leaf sheath during the booting stage were higher than those in the leaf sheath during other stages. Ligule had protected to infiltrate of conidia into the leaf sheath. 5. When conidia were infiltrated into the leaf sheath, the highest number of attached conidia was observed on the panicle base and panicle axis with hairs and degenerated panicle, which seemed to promote the infection of neck blast. 6. The lowest spore concentration for neck blast incidence was variable with rice varietal groups. $Indica{\times}Japonica$ hybrid varieties were infected easily compared to the Japonica type varieties, especially. The number of spores for neck blast incidence in $Indica{\times}Japonica$ hybrid varieties was less than 100 and disease index was higher also in $Indica{\times}Japonica$ hybrid than in Japonica type varieties. 7. Nitrogen content and silicate content were related with blast incidence in necks of rice plants in the different growing stage changed during growing period. Nitrogen content increased from booting stage to heading date and then decreased gradually as time passes. Silicate content increased from booting stage after heading with time. Change of these content promoted to increase neck blast infection. 8. Conidia moved to rice plant by ascending and desending dispersal and then attached on the rice plant. Conidia transfered horizontally was found very negligible. So we presumed that infection rate of neck blast was very low after emergence of panicle base from the leaf sheath. Also ascending air current by temperature difference between upper and lower side of rice plant seemed to increase the liberation of spores. 9. Conidial number of the blast fungus collected just before and after heading date was closely related with neck blast incidence. Lesions on three leaves from the top were closely related with neck blast incidence, because they had high potential for conidia formation of rice blast fungus and they were direct inoculum sources for neck blast. 10. The condition inside the leaf sheath was very favorable for the incidence of neck blast and the neck blast incidence in the leaf sheath increased as the level of fertilizer applied increased. Therefore, the infection rate of neck blast on the all panicle parts such as panicle base, panicle branches, spikelets, nodes, and internodes inside the leaf sheath didn't show differences due to varietal resistance or fertilizers applied. 11. Except for others among dominant species of fungi in the leaf sheath, only Gerlachia oryzae appeared to promote incidence of neck blast. It was assumed that days for heading of varieties were related with neck blast incidence.

  • PDF

Effects of Wood Particles and Steel Wire Compositions on Physical and Mechanical Properties of the Boards (목재(木材)파아티클과 철선(鐵線) 복합체(複合體)가 보오드의 물리적(物理的) 및 기계적(機械的) 성질(性質)에 미치는 영향(影響))

  • Park, Heon;Lee, Pill-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.3-44
    • /
    • 1986
  • In order to obtain the basic physical and mechanical properties of steel wire reinforced particleboard, particleboards were formed with large particles through 2.11 mm (12 meshes) and retained on 1.27mm (20 meshes) sieves and small particles through 1.27mm (20 meshes) and retained on 0.42mm (60 meshes) sieves from the plywood mill wastes of meranti (Shorea spp.) in the form of pallmanchips, applying urea-formaldehyde resin as an adhesive on the particle surface in 10 percent on the oven dried weight of particles, and arranging steel wires of 1mm in diameter 5,10,15,20, and 25mm in longitudinal and transverse direction with crossing in the mid of the board depth in single layer boards, 10mm in longitudinal or transverse direction without crossing in two layers and 10mm in longitudinal and transverse directions with and without crossing in three steel wire layers boards. The stepwise 9-minutes-multi-pressing schedule in 5 minutes at 35 kgf/$cm^2$, 2.5 minutes at 25 kgf/$cm^2$. and 1.5 minutes at 15 kgf/$cm^2$ was applied for $300{\times}200{\times}13$mm board at the temperature of 160$^{\circ}C$ in a hot press. Specific gravity, thickness swelling, bending properties of modulus of rupture (MOR), modulus of elasticity(MOE), work to proportional limit, and work to ultimate load, internal bond (IB), and screw holding power(SHP) of the reinforced boards were analyzed on the wire openings and wire layers. The results obtained are summarized as follows; 1) In specific gravity, particleboards with large particles and small particles had higher value with more steel wire placements and more steel layers composition, 2) Particleboards with large particles in accordance with more steel wire liners composition gave very poor thickness swelling. 3) The mechanical properties of particleboards formed with large or small particles were reinforced with more steel wire layers. Therefore, bending strength was improved in modulus of rupture, modulus of elasticity, and work to ultimate load. Especiallv, particleboards with two or three steel wire layers showed the tension lamination effect when the steels in lower steel wire layer were oriented parallel to the board length. 4) The modulus of rupture, modulus of elasticity, and work to ultimate load in bending varied with opening area, distance of lengthwise wires multipled by distance of transverse wires. Particleboards formed with large particles resulted in higher value in modulus of rupture with 1.5-3 $cm^2$ opening area, 1-2cm distance between transverse wires, and 1.5-2.5cm distance between lengthwise wires. Particle boards formed with small particles showed higher value with 0.5-1.5$cm^2$ or 3.75-6.25 $cm^2$ opening area, 0.5 or 2.5cm distance between transverse wires. 5) In modulus of elasticity, particleboards formed with large particles with one steel wire layer suggested higher value with 5-3$cm^2$ opening area, 1-2.5cm distance between transverse wires and also 1-2.5 cm distance between lengthwise wires. Particleboards formed with small particles showed higher value with 0.75-1.25$cm^2$ or 3-6.25$cm^2$ opening area and 0.5 or 2.5cm distance between transverse wires. 6) Particleboards formed with large particles gaved higher value in work to ultimate load with 1-3$cm^2$ opening area. Particleboards formed with small particles showed increasing tendancy with decreasing opening area. 7) In internal bond and screw holding power, particleboards formed with large particles had increasing value in two and three steel wire layers compositions, but particleboards formed with small particles showed no difference. Particleboards formed with large particles containing one steel wire layer showed no difference in internal bond and screw holding power, and particleboards formed with small panicles containing one steel wire layer resulted in increasing value in internal bond and decreasing value in screw holding power in accordance with increase in opening area.

  • PDF

Studies on Inheritance and Ecological Variation of the Culm Length and Its Related Characters in Short-Statured Rice Varieties (수도단간품종의 간장 및 관련형질의 유전과 생태적 변이에 관한 연구)

  • Sung-Ho Bea
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.13
    • /
    • pp.1-40
    • /
    • 1973
  • These studies were aimed at clarification of genetic and ecological variation in culm length, panicle length and plant height of the $\textrm{F}_2$ plants in some selected crosses made between semi-dwarf rice varieties and tall Japonica ones. One Indica semi-dwarf, Taichung Native 1, one Indica $\times$ Japonica hybrid, IE51 and one Japonica semi-dwarf, Tankanbaekmang were used as short-gene donors while two of medium maturity varieties, Jinheung and Kwanok and one late veriety, Palkweng were used as the corresponding counterpart of respective dwarf varieties in a series of crosses. Five different crosses, Kwanok $\times$ Tankanbaekmang, Palkweng $\times$ Tankanbaekmang, Jinheung $\times$ T(N)1, Kwanok $\times$ T(N)1 and Kwanok $\times$ IE51, were made among the above six varieties. The $\textrm{F}_2$ plants of these crosses together with the concerned parental varieties were grown under several different conditions including three levels of each nitrogen and planting space, three planting seasons and three locations in 1968, to investigate variation in length of culm and panicle, and plant height. On the other hand, the F$_3$ progenies which were derived from the shortest 10 percent of the plants of three $\textrm{F}_2$ populations, Kwanok $\times$ T(N)1, Jinheung $\times$ T(N) 1 and Kwanok $\times$ IE51 grown in the previous year, were compared each other on the basis of selection efficiency in culm length. The experimental results could be summarized as follows; 1. Genetic behavior A. It was revealed that Tankanbaekmang, one of Japonica dwarf has a simple recessive gene responsible for short culm expression, showing a typical segregation ratio of three tall to one short culm plants in $\textrm{F}_2$ generation of the crosses either with Kwanok or Palkweng. B. In the both combinations, segregation pattern of the panicle length was exactly same as that of culm length. It seems that the same gene controls both culm length and panicle length. C. No difference between segregation of culm length and plant height in the above crosses was observed. D. T(N)1, one of Indica semi-dwarf did not show such a simple genetic behavior as detected from the crosses with Tankanbaekmang in segregation of culm length but formed a continuous and normal distribution curve. Therefore, some nonallelic genic actions might be involved in expression of culm length of the counterpart varieties of T(N)1. In particular, a transgressive segregation appeared toward the direction of longer culm length in case of Jinheung $\times$ T(N)1. The genetic behavior of panicle length and plant height generally coincided with that of culm length in all the cases. E. IE51 demonstrated exactly the same genetic behavior as that of T(N)1 when this variety was crossed with Kwanok. It was clearly clarified that the simple recessive gene controlling dwarfism from T(N)1 was well incorporated into this variety. 2. Ecological variation A. In general, there was a decreasing tendency in culm length and plant height of rice plant as seeding delayed while it was not so noticeable in panicle length. The decreasing magnitude varied from variety to variety and from cross to cross. Genetic behavior of the culm length and related characters of these materials was not disturbed by the variation of seeding season, nitrogen level, planting space and experimental location. E. The elongation mode of the upper three internodes was very similar to the segregation mode of culm length, panicle length and plant height in $\textrm{F}_2$ populations of . all the crosses investigated in this study. Accordingly, this result confirmed that the roles of the upper three internodes are very important in manifesting plant stature in rice. C. The effect of nitrogen on culm length and the related other two characters seemed to be meager. However, it was true to show an increasing tendency of those characters as nitrogen level got increased from 4 kg to 12kg per l0a, with different magnitude depending upon variety or cross. D. Also, the effect of planting space on culm length, panicle length and plant height was relatively small in all the cases. Those characters varied again depending upon variety or cross. However, a general increasing tendency was detected in manifestation of those traits under denser planting space condition. E. All the parental varieties produced shorter culm, panicle and plant height when they were grown at the lower latitude locations. It might be attributed to the fact that their reproductive growth accelerated with increased temperature prevailing at the lower latitude locations such as Iri and Mi1yang. On the countrary, $\textrm{F}_2$ population reacted differently to the different locations from the parental varieties. All the $\textrm{F}_2$ plants produced the longest culm, panicle and plant at Milyang. 3. Selection efficiency A. The heritability of culm length in Kwanok $\times$ T(N)1, Kwanok $\times$ IE51 and Jinheung$\times$T(N)1 was 92 percent, 74 percent and 55 percent, respectively. B. The actual genetic advance for culm length obtained from the progeny lines of the selected plants(10 precent) from the $\textrm{F}_2$ generation, was comparable to the expected advance calculated from the original $\textrm{F}_2$ populations. As compared with the $\textrm{F}_2$ population, the $\textrm{F}_3$ plants of Kwanok $\times$ T(N)l shortened on the average by 20.8cm, those of Kwanok $\times$ IE51 did 8.7cm and those of Jinheung$\times$T(N)1 20.0cm, respectively. C. Panicle length of the populations was differently affected from one cross to another by the selection based upon culm length in $\textrm{F}_2$ Kwanok $\times$ T(N)1 did not show any noticeable shortening of its culm length due to the selection pressure. On the other hand, both Kwanok $\times$ IE51 and Jinheung $\times$ T(N)1 showed a considerable shortening of their panicles in case of selection for culm length. Based upon the above results, it could be concluded that the ecological variation in culm length, panicle length and plant height was relatively small and fallen within the range of genetic variation. Considering from the fact that the simple recessive gene governing short height of Tankanbaekmang always accompanied with some undesirable characters such as short panicle and extremely small grain, the short gene of T(N)1 seemed to be more useful as dwarf gene source since it did not carry short gene together with such undesirable traits.

  • PDF

Studies on the physio-chemical properties and the cultivation of oyster mushroom(Pleurotus ostreatus) (느타리버섯의 생리화학적성질(生理化學的性質) 및 재배(栽培)에 관(關)한 연구(硏究))

  • Hong, Jai-Sik
    • Applied Biological Chemistry
    • /
    • v.21 no.3
    • /
    • pp.150-184
    • /
    • 1978
  • Nutritional characteristics and physio-chemical properties of mycelial growth and fruitbody formation of oyster mushroom(Pleurotus ostreatus)in synthetic media, the curtural condition for the commerical production in the rice straw and poplar sawdust media, and the changes of the chemical components of the media and mushroom during the cultivation were investigated. The results can be summarized as follows: 1. Among the carbon sources mannitol and sucrose gave rapid mycelial growth and rapid formation of fruit-body with higher yield, while lactose and rhamnose gave no mycelial growth. Also, citric acid, succinic acid, ethyl alcohol and glycerol gave poor fruit-body formation, and acetic acid, formic acid, fumaric acid, n-butyl alcohol, n-propyl alcohol and iso-butyl alcohol inhibited mycelial growth. 2. Among the nitrogen sources peptone gave rapid mycelial growth and rapid formation of fruit-body with higher yield, while D,L-alanine, asparatic acid, glycine and serine gave very poor fruit-body formation, and nitrite nitrogens, L-tryptophan and L-tyrosine inhibited mycelial growth. Inorganic nitrogens and amino acids added to peptone were effective for fruit-body growth, and thus addition of ammonium sulfate, ammonium tartarate, D,L-alanine and L-leucine resulted in about 10% increase fruit-body yield. L-asparic acid about 15%, L-arginine about 20%, L-glutamic acid, and L-lysine about 25%. 3. At C/N ratio of 15.23 fruit-body formation was fast, but the yield decreased, and at C/N ratio of 11.42 fruit-body formation was slow, but the yield increased. Also, at the same C/N ratio the higher the concentration of mannitol and petone, the higher yield was produced. Thus, from the view point of both yield of fruit-body and time required for fruiting the optimum C/N ratio would be 30. 46. 4. Thiamine, potassium dihydrogen phosphate and magnecium sulfate at the concentration of $50{\mu}g%$. 0.2% and 0.02-0.03%, respectively, gave excellent mycelial and fruit-body growth. Among the micronutrients ferrous sulfate, zinc sulfate and manganese sulfate showed synergetic growth promoting effect but lack of manganese resulted in a little reduction in mycelial and fruit-body growth. The optimum concentrati on of each these nutrients was 0.02mg%. 5. Cytosine and indole acetic acid at 0.2-1mg% and 0.01mg%, respectively, increased amount of mycelia, but had no effect on yield of fruit-body. The other purine and pyrimidine bases and plant hormones also had no effect on mycelial and fruit-belly yield. 6. Illumination inhibited mycelial growth, but illumination during the latter part of vegetative growth induced primordia formation. The optimum light intensity and exposure time was 100 to 500 lux and 6-12 hours per day, respectively. Higher intensity of light was injurous, and in darkness only vegetative growth without primordia formation was continued. 7. The optimum temperature for mycelial growth was $25^{\circ}C$ and for fruit-body formation 10 to $15^{\circi}C$. The optimum pH range was from 5.0 to 6.5. The most excellent fry it-body formation were produced from the mycelium grown for 7 to 10 days. The lesser the volume of media, the more rapid the formation of fruit-body; and the lower the yield of fruit-body; and the more the volume of media, the slower the formation of fruit-body, and the higher the yield of fruit-body. The primordia formation was inhibited by $CO_2$. 8. The optimum moisture content for mycelial growth was over 70% in the bottle media of rice straw and poplar sawdust. 10% addition of rice bran to the media exhibited excellent mycelial growth and fruit-body formation, and the addition of calciumcarbonate alone was effective, but the addition of calcium carbonate was ineffective in the presence of rice bran. 9. In the cultivation experiments the total yield of mushroom from the rice straw media was $14.99kg/m^2$, and from the sawdust media $6.52kg/m^2$, 90% of which was produced from the first and second cropping period. The total yield from the rice straw media was about 2.3 times as high as that from the sawdust media. 10. Among the chemical components of the media little change was observed in the content of ash on the dry weight basis, and organic matter content decreased as the cultivation progressed. Moisture content, which was about 79% at the time of spawning, decreased a little during the period of mycelial propagation, after which no change was observed. 11. During the period from spawning to the fourth cropping about 16.7% of the dry matter, about 19.3% of organic matter, and about 40% of nitrogen were lost from the rice straw media; about 7.5% of dry mallet, about 7.6% of organic matter, and about 20% of nitrogen were lost from the sawdust media. For the production of 1kg of mushroom about 232g of organic matter and about 7.0g of nitrogen were consumed from the rice straw media; about 235g of organic matter and about 6.8g of nitrogen were consumed from the sawdust media, 1㎏ of mushroom from either of media contains 82.4 and 82.3g of organic matter and 5.6 and 5.4g of nitrogen, respectively. 12. Total nitrogen content of the two media decreased gradually as the cultivation progressed, and total loss of insoluble nitrogen was greater than that of soluble nitrogen. Content of amino nitrogen continued to increase up to the third cropping time, after which it decreased. 13. In the rice straw media 28.0 and 13.8% of the total pentosan and ${\alpha}$-cellulose, respectively, lost during the whole cultivation period was lost during the period of mycelial growth; in the sawdust media 24.1 and 11.9% of the total pentosan and ${\alpha}$-cellulose, respectively, was lost during the period of mycelial growth. Lignin content in the media began to decrease slightly from the second cropping time, while the content of reduced sugar, trehalose and mannitol continued to increase. C/N ratio of the rice straw media decreased from 33.2 at spawining to 30.0 at ending; that of the sawdust media decreased from 61.3 to 60.0. 14. In both media phosphorus, potassium, manganese and zinc decreased, at magnesium, calcium and copper showed irregular changes, and iron had a tendency to be increased. 15. Enzyme activities are much higher in the rice straw media than in the sawdust media. CMC saccharifying and liquefying activity gradually increased from after mycelial propagation to the second cropping, after which it decreased in both media. Xylanase activity rapidly and greatly increased during the second cropping period rather than the first period. At the start of the third cropping period the activity decreased rapidly in the rice straw media, which was not observed in the sawdust media. Protease activity was highest after mycelial propagation, after which it gradually decreased. The pH of the rice straw media decreased from 6.3 at spawning to 5.0 after fourth cropping; that of the sawdust media decreased from 5.7 to 4.9. 16. The contents of all the components except crude fibre of the mushroom from the rice straw media were higher than those from the sawdust media. Little change was observed in the content of the components of mushroom cropped from the first to the third period, but slight decrease was noticed at the fourth cropping.

  • PDF