• Title/Summary/Keyword: Effect of complex buildings

Search Result 84, Processing Time 0.022 seconds

Evaluating Wind Load and Wind-induced Response of a Twin Building using Proper Orthogonal Decomposition (트윈 빌딩의 적합 직교 분해 기법을 이용한 풍하중 및 풍응답 평가)

  • Kim, Bub-Ryur
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.309-314
    • /
    • 2018
  • The wind load and structural characteristics of a twin building are more complex than those of conventional high-rise buildings. The pressure load due to wind on a twin building was therefore measured via wind tunnel experiments to analyze such characteristics. The wind pressure pattern was then deduced from measured data using proper orthogonal decomposition. Channeling and vortex shedding were observed in the first and second modes, respectively. The along-wind loads on the two buildings featured a positive correlation and the cross-wind loads featured no correlation. Such a correlation affected the wind-induced displacement. The structural member connecting the two buildings had an insignificant effect on the positive correlation, but it notably reduced the wind-induced displacement with a negative correlation.

GIS-based Urban Flood Inundation Analysis Model Considering Building Effect (건물영향을 고려한 GIS기반 도시침수해석 모형)

  • Lee, Chang-Hee;Han, Kun-Yeun
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.3
    • /
    • pp.223-236
    • /
    • 2007
  • Recently in urban area flood damages increase due to local concentrated heavy rainfall. Even in the cities where stormwater drainage systems are relatively well established flood damage still occurs because of the capacity limitations of the existing stormwater drainage systems. When the flood exceeds the capacity limitation of the urban storm sewer system, it yields huge property losses of public facilities involving roadway inundation to paralyze industrial and transportation system of the city. To prevent such flood damages in urban area, it is necessary to develop adequate inundation analysis model which can consider complicated geometry of urban area and artificial drainage system simultaneously. The Dual-Drainage model used in this study is the urban inundation analysis model which combines SWMM with DEM based 2-dimensional surface flood inundation model. In this study, the dual drainage model has been modified to consider the effect of complex buildings in urban area. Through the simulation of time variable inundation process, it is possible to identify inundation alert locations as well as to establish emergency action plan for the residencial area vulnerable to flood inundation.

A Basic Study on Analysis of the Impact of Building Shape on Safety Accidents (건물의 형상이 안전사고에 미치는 영향분석에 관한 기초연구)

  • Son, Seunghyun;Kim, Ji-Myung;Ahn, Sungjin;Han, Bumjin;Na, Youngju;Kim, Taehui
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.27-28
    • /
    • 2022
  • There is a limit to preventing various types of safety accidents in advance at construction sites. Even for buildings of the same total floor area, it is expected that the more complex the building shape or the higher the number of floors, the higher the probability of a safety accident. Therefore, it is necessary to analyze the effect of the shape of a building on safety accidents using safety accident data generated during actual construction. The purpose of this study is to analyze the impact of building shape on safety accidents. As a result, the R2 value of shape factor and safety accident was 0.901, and the R2 value of construction difficulty and safety accident was 0.944. In the future, the results of this study will be used as basic data for improving safety management related systems.

  • PDF

Spatial and temporal distribution of driving rain on a low-rise building

  • Blocken, Bert;Carmeliet, Jan
    • Wind and Structures
    • /
    • v.5 no.5
    • /
    • pp.441-462
    • /
    • 2002
  • This paper presents a practical numerical method to determine both the spatial and temporal distribution of driving rain on buildings. It is based on an existing numerical simulation technique and uses the building geometry and climatic data at the building site as input. The method is applied to determine the 3D spatial and temporal distribution of wind-driven rain on the facade a low-rise building of complex geometry. Distinct wetting patterns are found. The important causes giving rise to these particular patterns are identified : (1) sweeping of raindrops towards vertical building edges, (2) sweeping of raindrops towards top edges, (3) shelter effect by various roof overhang configurations. The comparison of the numerical results with full-scale measurements in both space and time for a number of on site recorded rain events shows the numerical method to yield accurate results.

A Study on the Color of Apartment Building Outer Wall Effecting in Streetscape -Focused on Highrize Housing Complex in Gwangju- (고층집합주택 외벽 색채가 가로경관에 미치는 영향에 관한 연구 -광주광역시 고층정합주택단지를 중심으로-)

  • Park Sung-Jin;Ha Ju-A;Lee Cheong-Woong
    • Journal of the Korean housing association
    • /
    • v.15 no.5
    • /
    • pp.33-41
    • /
    • 2004
  • This study examined the effect of the main color of apartment building as background color on the preference for residential streetscape in the relation with surrounding environment of streetscape with its focus on the color of apartment building outer wall. To research a visual evaluation structure, this study aimed to understand its characteristics through quantitative assay and to provide more scientific and specific data about improvement direction. The results suggested that the current brightness and chroma of main color of apartment building was high and low respectively which was advisable. On the other hand, in the color, when the components of the whole streetscape included buildings or soundproofing walls, a streetscape image needed to be improved though the color scheme of 4-distance color difference.

Performance Study of Wind Augmentation Device for Building-integrated Wind Power (건물 풍력발전을 위한 집풍장치 성능 연구)

  • Shin, Jae-Ryul;Park, Jae-Jeun;Kim, Han-Young;Kim, Dae-Young
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.4
    • /
    • pp.42-49
    • /
    • 2012
  • This study is performance estimation of wind augmentation device for BiWP(Building-integrated Wind Power) which recently attracts attention as a local power. various structures are installed on a rooftop of residential complex buildings. Changing a profile of these, we designed a configuration that is able to capture much air and increase exit velocity. To estimate wind augmented effect of this device, we compared numerical analysis results with wind tunnel test results. Results show that exit velocity is increased from 24% to 60% by wind augmented device on a rooftop of building.

An Analysis of the Accident Types and Causes of Construction Cranes (크레인 관련 중대재해사례를 통한 재해 유형 및 원인 분석)

  • Kim, Hong-Hyun;Lee, Ghang
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.04a
    • /
    • pp.109-112
    • /
    • 2007
  • As buildings become higher, larger, and more complex, safety issues for construction workers working at such environments become more important. We analyzed 140 critical accident cases reported to the KOSHA(Korea Occupational Safety & Health Agency) for construction cranes and lifts by types of cranes and by patterns of accidents and causes. By finding out the accident's types and causes, we expect to develop an efficient measure for preventing similar accidents in the near future. The cases will be studied further and reexamined using the FMEA(Failure Mode and Effect Analysis) as a quantitative analysis method.

  • PDF

Optimum Structural Planning of the Underground Space Utilization in the Long-Life Housing (장수명주택의 지하공간활용 최적화 구조계획기법)

  • Kang, Ji-Yeon;Kim, Hyung-Geun;Jo, Min-Joo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.1
    • /
    • pp.85-92
    • /
    • 2017
  • The objective of this paper is to suggest structural design for the long-life housing apartment complex to save the construction cost. The key is to use unavailable underground space due to bearing walls or bad configuration of columns in apartments as the parking space. Therefore, the structural plan of apartment buildings considering the parking section in the underground should be designed. After analytical resutls of three cases, it is significant effect in saving construction cost.

Spring Length Effect on the Flow Capacity of automatic Flow-Temperature Control Valve (자동 정유량 온도조절밸브의 스프링 길이가 밸브 용량에 미치는 영향)

  • Yoo, Seon-Hak;Kang, Seung-Duk;Park, Kyung-Am
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.174-177
    • /
    • 2003
  • The automatic temperature control valve is used to control the flow rate of heating water in the large apartment complex and buildings. It is important to have simillar heating flow rate in the apartments, even though the apartment is top or bottom floors. To achieve those purposes, the automatic flow-temperature control valve was developed. The perfromance of this control valve is effected by the catridge shape and spring length. The flow capacity of this control valve is obtained with the different shape of catridges and with change of spring length.

  • PDF

Implementation of bond-slip effects on behaviour of slabs in structures

  • Mousavi, S.S.;Dehestani, M.
    • Computers and Concrete
    • /
    • v.16 no.2
    • /
    • pp.311-327
    • /
    • 2015
  • Employing discrete elements for considering bond-slip effects in reinforced concrete structures is very time consuming. In this study, a new modified embedded element method is used to consider the bond-slip phenomenon in structural behavior of reinforced concrete structures. A comprehensive parametric study of RC slabs is performed to determine influence of different variables on structural behavior. The parametric study includes a set of simple models accompanied with complex models such as multi-storey buildings. The procedure includes the decrease in the effective stiffness of steel bar in the layered model. Validation of the proposed model with existing experimental results demonstrates that the model is capable of considering the bond-slip effects in embedded elements. Results demonstrate the significant effect of bond-slip on total behavior of structural members. Concrete characteristic strengths, steel yield stress, bar diameter, concrete coverage and reinforcement ratios are the parameters considered in the parametric study. Results revealed that the overall behavior of slab is significantly affected by bar diameter compared with other parameters. Variation of steel yield stress has insignificant impact in static response of RC slabs; however, its effect in cyclic behavior is important.