• Title/Summary/Keyword: Effect of Operating Conditions

Search Result 811, Processing Time 0.026 seconds

A Study on Energy Saving Performance by Night Purge Cooling with Pressurized Under Floor Air Distribution System (가압식 바닥공조 시스템과 야간 외기냉방의 병용에 따른 에너지저감 성능에 관한 연구)

  • Yoon, Seong-Hoon
    • Journal of the Korean Solar Energy Society
    • /
    • v.40 no.1
    • /
    • pp.25-33
    • /
    • 2020
  • It has been reported about the energy saving performance of UFAD(under floor air distribution) system and NPC(night purge cooling) system respectively which are applied for commercial buildings. However, when two systems are used at the same time, the effect of heat transfer from floor plenum to slab may vary depending on the operating conditions of NPC. In this study, cooling energy demands were analyzed for building models with UFAD and NPC by using TRNSYS 17 program. UFAD was applied as a cooling system of the base building model, and the cooling energy demands were compared for 64 cases in which the operating time, supply airflow rate, and outdoor air temperature(To) of NPC. As a result, it was confirmed that the cooling energy demands were reduced to 30 ~ 80% level compared to UFAD alone, and in particular, the energy demand was reduced in proportion to the supply airflow rate or the operating time while To was 16 ~ 20℃. However, when To was 22℃, the increase in the supply airflow rate or the operating time results in a disadvantage in terms of cooling energy demands. In addition, the cooling energy demands for UFAD+NPC model were analyzed by applying weather data from three regions with different average outdoor air temperatures. As a result, the cooling energy demand of operating NPC only when To was below 20℃ was reduced by 27% compared to that of operating NPC continuously for 8 hours.

Seismic and Structure Analysis of a Temporary Rack Construction in a Nuclear Power Plant (원자력 발전소 공사용 임시받침대의 내진 및 구조해석)

  • Kim, Heung-Tae;Lee, Young-Shin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1265-1271
    • /
    • 2011
  • In this study, the safety of a rack structure was evaluated through seismic analysis considering fluid-structure interactions using a finite-element model. The rack structure was immersed under water, so it was influenced by the water. The fluid-structure interaction can be specified in terms of the hydrodynamic effect, which is defined as the added mass per unit length. Modal analysis and seismic analysis using the Floor Response Spectrum (FRS) were carried out under Operating Basis Earthquake (OBE) and Safe Shutdown Earthquake (SSE) conditions. The analytical maximum displacements of the rack structure were 0.29 and 0.36 mm under OBE and SSE conditions, respectively. The maximum stresses were 17.9 MPa under OBE conditions and 19.6 MPa under SSE conditions; these results corresponded to 23 % and 14% of the yield strength of the applied material, respectively.

A simulation study on synthesis gas process optimization for FT(Fischer-Tropsh) synthesis (FT(Fischer-Tropsh) 합성유 제조를 위한 합성가스 공정 최적화 연구)

  • Kim, Yong-Heon;Lee, Won-Su;Lee, Heoung-Yeoun;Koo, Kee-Young;Song, In-Kyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.888-888
    • /
    • 2009
  • A simulation study on SCR (Steam Carbon dioxide Reforming) process in gas-to-liquid (natural gas to Fischer-Tropsch synthetic fuel) process was carried out in order to find optimum reaction conditions for GTL (gas-to-liquid) process reaction. Optimum SCR operating conditions for synthesis gas to FT (Fischer-Tropsch) process were determined by changing reaction variables such as feed temperature and pressure. During the simulation, overall synthesis process was assumed to proceed under steady-state conditions. It was also assumed that physical properties of reaction medium were governed by RKS (Redlich-Kwong-Soave) equation. SCR process was considered as reaction models for synthesis gas in GTL proess. The effect of temperature and pressure on SCR process $H_2$/CO ratio and the effect of reaction pressure on SCR reaction were mainly examined. Simulation results were also compared to experimental results to confirm the reliability of simulation model. Simulation results were reasonably well matched with experimental results.

  • PDF

The Effect of Ultrasonic Vibration in Desizing and Scouring of Polyester Fabrics (폴리에스테르 섬유의 호발과 정련에서 초음파진동 효과)

  • 박영태;최호상;이광수
    • Textile Coloration and Finishing
    • /
    • v.11 no.5
    • /
    • pp.1-6
    • /
    • 1999
  • This study was carried out to investigate the effect of a scouring machine including an ultrasonic system on desizing and scouring polyester fabrics. The ultrasonic frequency of the improved machine showed up at 28.882 kHz. Frequency amplitude increased with the current and the bath temperature, and then showed a constant level. Scouring effect of the ultrasonic machine was better than that of the conventional scouring machine using the mechanical stirring. The ultrasonic machine showed the optimum scouring effect at $50^\circ{C}$ of bath temperature and 10 min. of operation time, as compared to the conventional machine that required operating conditions of high temperature at $90^\circ{C}$, stirring speed at 40 rpm, and stirring time for 15 min..

  • PDF

An Experimental Study on Performance of the Inertance Pulse Tube Refrigerator using a Small Compressor (소형 압축기를 이용한 관성관형 맥동관 냉동기의 성능 특성에 대한 실험적 연구)

  • Kim Hongseong;Jeong Sangkwon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.6
    • /
    • pp.552-559
    • /
    • 2005
  • This paper describes an experimental study on the inertance pulse tube refrigerator using a small compressor. The purpose of this experimental study is to identify the performance of the inertance pulse tube refrigerator for various operating conditions and to obtain the optimum configuration. The dead volume effect is verified by two experimental apparatuses with different dead volumes between the compressor and the aftercooler. The refrigerator of the smaller dead volume shows better performance. The influence of operating frequency and charging pressure on the performance of the refrigerator is experimentally investigated. Reducing the regenerator mesh size improves the performance of the refrigerator. Finally, the inertance pulse tube refrigerator has maximum cooling capacity at the specific combination of the pulse tube length and the inertance tube length. The loss analysis is used to analyze and predict the optimum condition of the pulse tube refrigerator.

Operating Characteristics of 5MW Class Gas Turbine Engine for Power Generation (5MW급 발전용 가스터빈 엔진의 작동 특성)

  • Park, Jun-Cheol;Hong, Sung-Jin;Bograd, Alexander;Ryu, Je-Wook
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.331-334
    • /
    • 2010
  • Operating characteristics of DGT-5 being developed by Doosan Heavy Industries & Construction Co., Ltd. for power generation service was evaluated. Starting behavior was improved by a series of tests to investigate the effect of various fuel schedule and several combination of bleed valve control. The engine showed stable operation without any instability of compressor in the full operating regime covering from start-up to load conditions. If there is a rapid change of load in the condition of synchronization to Grid, the engine can be controlled stably based on the analysis of dynamic responses of the engine to an rapid load change and a sudden load rejection.

  • PDF

A Study on the Leakage Analysis of Scroll Compressor with Thermal Deformation Considered (열변형을 고려한 스크롤 압축기의 누설 해석에 관한 연구)

  • Gu, In-Hoe;Park, Jin-Mu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2428-2437
    • /
    • 2000
  • In general, it is known that the portion of leakage loss is more than 20 % of total loss in scroll compressor. So far many studies have been done to improve the leakage problem and volumetric efficiency. In order to do this it is necessary that the leakage is exactly evaluated for conventional scroll model. Almost all studies that have been done were assumed that the clearance remains constant while operating. But in actual operating conditions, scroll wrap is deformed due to elevated refrigerant gas temperature. And this makes the leakage clearance change, so the leakage mass flow and the volumetric efficiency are also changed. In this study we assumed the steady state operating condition and obtain the average temperature and convection heat transfer coefficient in terms of involute angle. With these results, using finite element method we analyzed the heat transfer of scroll wrap, then did thermal deformation analysis. Then we obtain the leakage clearance and do the leakage and volumetric efficiency analysis. Compared with undeformed feature, we examine the effect of the thermal deformation on the leakage. The results say that the leakage mass flow for the case of considering thermal deformation is less than that for the unconsidered one, and this means that the leakage clearance is reduced due to thermal deformation.

Detailed Analysis on Operation Characteristics and Cooling Energy Saving Effect of Chiller Staging in an Office Building (사무소 건물에서 냉동기의 대수제어를 통한 냉동기 거동 특성 및 에너지 절감 효과 분석)

  • Seo, Byeong-Mo;Son, Jeong-Eun;Lee, Kwang Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.4
    • /
    • pp.137-144
    • /
    • 2016
  • Commercial buildings account for a significant proportion of the total building energy use in Korea, and cooling energy, in turn, accounts for the largest proportion of total energy consumption in commercial buildings. Under this circumstance, chiller staging is considered to be a reasonable and practical solution for cooling energy saving. In this study, the part-load ratio and the operating characteristics of a vapor compression chiller were analysed within an office building. In addition, energy consumption among different chiller staging schemes was comparatively analysed. As a result, significant proportions of total operating hours, cooling load and energy consumption turned out to be in the part load ratio range from 0% through 50%, and thus energy consumption was significantly affected by the chiller COP at low part-load conditions, indicating that the chiller operation at the part-load is an important factor in commercial buildings. In addition, utilizing a sequential chiller staging scheme can reduce the annual cooling energy usage by more than 10.3% compared to operating a single chiller.

Numerical Investigation of Internal Flow Field for Diffuser Passage Compressor

  • Yamagami, Mai;Tsuchiya, Naoki;Kato, Dai;Kodama, Hidekazu;Yamamoto, Kazuomi;Enomoto, Shunji;Horiguchi, Yasuo;Outa, Eisuke
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.136-142
    • /
    • 2008
  • The influence of different grids on numerical prediction of subsonic compressor performance and stall was investigated. Two types of grids were examined, structured H type grid and structured O-H type grid. Evaluations were conducted by comparing the numerical results with experimental results obtained from a low-speed single-stage rig test for a new concept compressor, called diffuser passage compressor, aiming at improving tip clearance sensitivity. At low mass flow operating conditions, the numerical calculation with O-H type grid showed that the lowest mass flow operating point for which the calculation was able to converge was almost the same as the lowest steady mass flow obtained from the rig test. On the other hand, the numerical calculation with structured H type grid diverged at higher mass flow operating point. It was found that this difference was attributed to the effect of double-valuedness of H type grid that existed at leading edge on the boundary layer development on the blade surface.

  • PDF

Numerical study of effect of membrane properties on long-cycle performance of vanadium redox flow batteries

  • Wei, Zi;Siddique, N.A.;Liu, Dong;Sakri, Shambhavi;Liu, Fuqiang
    • Advances in Energy Research
    • /
    • v.4 no.4
    • /
    • pp.285-297
    • /
    • 2016
  • Fundamental understanding of vanadium ion transport and the detrimental effects of cross-contamination on vanadium redox flow battery (VRFB) performance is critical for developing low-cost, robust, and highly selective proton-conducting membranes for VRFBs. The objective of this work is to examine the effect of conductivity and diffusivity, two key membrane parameters, on long-cycle performance of a VRFB at different operating conditions using a transient 2D multi-component model. This single-channel model combines the transport of vanadium ions, chemical reactions between permeated ions, and electrochemical reactions. It has been discovered that membrane selecting criterion for long cycles depends critically on current density and operating voltage range of the cell. The conducted simulation work is also designed to study the synergistic effects of the membrane properties on dynamics of VRFBs as well as to provide general guidelines for future membrane material development.