• 제목/요약/키워드: Educational data mining

검색결과 68건 처리시간 0.024초

Students' Performance Prediction in Higher Education Using Multi-Agent Framework Based Distributed Data Mining Approach: A Review

  • M.Nazir;A.Noraziah;M.Rahmah
    • International Journal of Computer Science & Network Security
    • /
    • 제23권10호
    • /
    • pp.135-146
    • /
    • 2023
  • An effective educational program warrants the inclusion of an innovative construction which enhances the higher education efficacy in such a way that accelerates the achievement of desired results and reduces the risk of failures. Educational Decision Support System (EDSS) has currently been a hot topic in educational systems, facilitating the pupil result monitoring and evaluation to be performed during their development. Insufficient information systems encounter trouble and hurdles in making the sufficient advantage from EDSS owing to the deficit of accuracy, incorrect analysis study of the characteristic, and inadequate database. DMTs (Data Mining Techniques) provide helpful tools in finding the models or forms of data and are extremely useful in the decision-making process. Several researchers have participated in the research involving distributed data mining with multi-agent technology. The rapid growth of network technology and IT use has led to the widespread use of distributed databases. This article explains the available data mining technology and the distributed data mining system framework. Distributed Data Mining approach is utilized for this work so that a classifier capable of predicting the success of students in the economic domain can be constructed. This research also discusses the Intelligent Knowledge Base Distributed Data Mining framework to assess the performance of the students through a mid-term exam and final-term exam employing Multi-agent system-based educational mining techniques. Using single and ensemble-based classifiers, this study intends to investigate the factors that influence student performance in higher education and construct a classification model that can predict academic achievement. We also discussed the importance of multi-agent systems and comparative machine learning approaches in EDSS development.

A Better Prediction for Higher Education Performance using the Decision Tree

  • Hilal, Anwar;Zamani, Abu Sarwar;Ahmad, Sultan;Rizwanullah, Mohammad
    • International Journal of Computer Science & Network Security
    • /
    • 제21권4호
    • /
    • pp.209-213
    • /
    • 2021
  • Data mining is the application of specific algorithms for extracting patterns from data and KDD is the automated or convenient extraction of patterns representing knowledge implicitly stored or captured in large databases, data warehouses, the Web, other massive information repositories or data streams. Data mining can be used for decision making in educational system. But educational institution does not use any knowledge discovery process approach on these data; this knowledge can be used to increase the quality of education. The problem was happening in the educational management system, but to make education system more flexible and discover knowledge from it huge data, we will use data mining techniques to solve problem.

데이터 마이닝 기법을 이용한 특성화고등학교 교육성과 분석 (An Analysis of Specialized Vocational High School's Educational outcome using Data Mining Technique)

  • 김진;용환승
    • 컴퓨터교육학회논문지
    • /
    • 제17권6호
    • /
    • pp.21-33
    • /
    • 2014
  • 본 연구는 초 중등 교육정보 공시를 통하여 전국 특성화고등학교의 학교단위별 자료(2012년도)를 파악한 후 데이터 마이닝 기법을 활용해 교육성과에 대한 분석을 실시하였다. 특성화고등학교의 교육성과는 취업률, 진학률, 기능경기대회 입상성적으로 정하였다. 분석은 크게 두 가지로 나뉘는데 첫 번째, 학교현황에 따라 각 교육성과에 유의한 차이가 있는지 알아보고 두 번째, 교육활동을 포함한 학교의 세부적 사항 중 각 교육성과에 영향을 미치는 요인을 탐색하였다.

  • PDF

웹 로그에서의 Apriori 알고리즘 기반 사용자 액세스 패턴 발견 (User Access Patterns Discovery based on Apriori Algorithm under Web Logs)

  • 염종림;정석태
    • 한국정보전자통신기술학회논문지
    • /
    • 제12권6호
    • /
    • pp.681-689
    • /
    • 2019
  • 웹 사용 패턴 발견은 웹 로그 데이터를 사용하는 고급 수단이며 웹 로그 데이터 마이닝에 데이터 마이닝 기술을 적용한 특정 응용이다. 교육 분야에서 데이터 마이닝 (DM)은 데이터 마이닝 기술을 교육 데이터 (대학의 웹 로그, e-러닝, 적응형 하이퍼미디어 및 지능형 튜터링시스템 등)에 적용한다. 따라서 교육 연구 문제를 해결하기 위해 이러한 유형의 데이터를 분석하는 것이 목표이다. 본 논문에서는 대학의 웹 로그 데이터가 데이터 마이닝의 연구 대상으로 사용되어 진다. 데이터베이스 OLAP 기술을 사용하여 웹 로그 데이터가 데이터 마이닝에 사용될 수 있는 데이터 형식으로 사전 처리되고 그 처리 결과가 MSSQL에 저장된다. 동시에 처리 된 웹 로그 레코드를 기반으로 기본 데이터 통계 및 분석이 완료된다. 또한 웹 사용 패턴 마이닝의 Apriori Algorithm 및 구현 프로세스를 소개하고 Python 개발 환경에서 Apriori Algorithm 프로그램을 개발했다. 그런 다음 Apriori Algorithm의 성능을 보이고 웹 사용자 액세스 패턴의 마이닝을 실현했다. 이 연구 결과는 교육 시스템 개발에 패턴을 적용하는데 중요한 이론적 의미를 갖는다. 다음 연구로는 분산 컴퓨팅 환경에서 Apriori Algorithm의 성능 향상을 연구하는 것이다.

A Critical Analysis of Learning Technologies and Informal Learning in Online Social Networks Using Learning Analytics

  • Audu Kafwa Dodo;Ezekiel Uzor OKike
    • International Journal of Computer Science & Network Security
    • /
    • 제24권1호
    • /
    • pp.71-84
    • /
    • 2024
  • This paper presents a critical analysis of the current application of big data in higher education and how Learning Analytics (LA), and Educational Data Mining (EDM) are helping to shape learning in higher education institutions that have applied the concepts successfully. An extensive literature review of Learning Analytics, Educational Data Mining, Learning Management Systems, Informal Learning and Online Social Networks are presented to understand their usage and trends in higher education pedagogy taking advantage of 21st century educational technologies and platforms. The roles of and benefits of these technologies in teaching and learning are critically examined. Imperatively, this study provides vital information for education stakeholders on the significance of establishing a teaching and learning agenda that takes advantage of today's educational relevant technologies to promote teaching and learning while also acknowledging the difficulties of 21st-century learning. Aside from the roles and benefits of these technologies, the review highlights major challenges and research needs apparent in the use and application of these technologies. It appears that there is lack of research understanding in the challenges and utilization of data effectively for learning analytics, despite the massive educational data generated by high institutions. Also due to the growing importance of LA, there appears to be a serious lack of academic research that explore the application and impact of LA in high institution, especially in the context of informal online social network learning. In addition, high institution managers seem not to understand the emerging trends of LA which could be useful in the running of higher education. Though LA is viewed as a complex and expensive technology that will culturally change the future of high institution, the question that comes to mind is whether the use of LA in relation to informal learning in online social network is really what is expected? A study to analyze and evaluate the elements that influence high usage of OSN is also needed in the African context. It is high time African Universities paid attention to the application and use of these technologies to create a simplified learning approach occasioned by the use of these technologies.

데이터마이닝을 이용한 설문조사의 심층 분석 (An In-depth Survey Analysis Applying Data Mining Techniques)

  • 김완섭;이수원
    • 공학교육연구
    • /
    • 제9권4호
    • /
    • pp.71-82
    • /
    • 2006
  • 학과의 교육목표 달성을 위해서는 순환형 자율 개선 구조를 운영하기 위한 시스템이 필요하며, 설문조사 분석을 통한 교육시스템의 개선은 교육목표 달성을 위한 중요한 요소 중의 하나이다. 일반적으로 설문조사 분석에서는 항목별로 통계적인 분포를 조사하거나 두 개의 항목간의 연관성을 조사하는 분석 방법이 주로 사용된다. 그러나 이러한 분석 방법은 다양한 항목들 간의 상호 연관성을 분석하지 못하는 한계가 있으므로 보다 심층적인 분석방법이 필요하다. 본 논문에서는 데이터마이닝 기법을 적용한 심층적인 분석 기법을 제시한다. 데이터마이닝이란 대용량의 데이터에 숨겨져 있는 지식을 추출해 내는 기법으로 설문분석에도 효과적으로 이용될 수 있다. 본 분석에서는 Clementine 데이터마이닝 도구를 사용하여 숭실대학교 컴퓨터학과의 재학생에 대한 설문자료에 대한 심층 분석을 수행하였다. 분석의 결과로 '학점'과 다른 항목들과의 연관성을 계층적으로 분석할 수 있었으며, '학점'에 대한 학생상담과 학과의 교육 프로그램 개선에 실제적으로 사용할 수 있는 유용한 정보들을 획득할 수 있었다.

LDA기반 토픽모델링을 활용한 공공데이터 기반의 교육용 데이터마이닝 연구 (A Study on Educational Data Mining for Public Data Portal through Topic Modeling Method with Latent Dirichlet Allocation)

  • 신승기
    • 정보교육학회논문지
    • /
    • 제26권5호
    • /
    • pp.439-448
    • /
    • 2022
  • 본 연구에서는 공공데이터포털에서 제공하는 교육관련 데이터를 검색하고 토픽모델링 기법을 활용한 분류를 통해 어떠한 데이터의 종류가 구축되어 있으며 활용이 가능한지를 살펴보고자 하였다. 공공데이터포털의 데이터에 대하여 분류체계를 기준으로 교육분야의 파일데이터는 3,072건이 수집되었으며, 검색어를 활용하여 '교육'을 검색하여 나타난 파일데이터 2,361건으로 나타났다. 각각의 데이터셋에 대하여 불용어처리를 실시하고 데이터 전처리를 수행하여 LDA기반 토픽모델링을 활용하여 텍스트마이닝 분석을 실시하였다. 사전에 교육으로 분류된 데이터셋에서는 현재 재학중인 학교급별 학생을 대상으로 지원하는 프로그램과 정보에 대한 내용이 제공되고 있었다. 한편, 교육으로 검색하여 수집된 데이터셋에서는 장애인, 학부모, 노인, 아동 등 평생교육의 관점으로 제공되는 교육 프로그램 및 지원현황이라는 특징이 나타났다. 데이터과학기반의 의사결정 및 문제해결력을 기르기 위해 공공데이터포털이 제공하는 데이터에서 교육과정 및 내용이 충분히 제공되는 것도 좋은 기회가 될 것이다.

국내 공학 교육통계 시스템 구축 (The Construction of Engineering Educational Statistics System in Korea)

  • 안혜정;김지현;홍성조
    • 공학교육연구
    • /
    • 제19권2호
    • /
    • pp.53-59
    • /
    • 2016
  • Along with the industry growth, engineering colleges in Korea has have a quantitative growth. Many of the policy promotions and budgets for engineering colleges from the government are supported. And the various monitoring methods to verify their achievement have demanded. This paper deals with the construction of engineering educational statistics system in Korea. It named Korea Engineering Data Management System(K-EDMS). This system is based on the data mining tool and supports data-based decision making for an advanced engineering education service. This paper presents related researches of case studies. Then, we have designed K-EDMS, and constructed 157 cases for engineering colleges of the year 2014.

데이터 마이닝의 수학적 배경과 교육방법론 (Mathematical Foundations and Educational Methodology of Data Mining)

  • 이승우
    • 한국수학사학회지
    • /
    • 제18권2호
    • /
    • pp.95-106
    • /
    • 2005
  • 본 논문에서는 수학을 기반으로 한 데이터베이스의 지식탐사 절차를 통하여 데이터의 선택, 정제, 통합, 변환, 축소, 데이터 마이닝 기법의 선택과 적용 및 모형의 평가에 관한 개념과 방법론을 소개하고 수학의 한 분야로서 통계학의 역할과 적용방법에 관하여 연구하고자 한다. 또한 오늘날 관심이 대상이 되고 있는 데이터 마이닝의 역사와 수학적 배경, 통계 및 정보 기술을 이용한 데이터 마이닝의 주요 모델링 기법, 실용적 응용 분야 및 적용 사례 그리고 데이터 마이닝과 통계의 차이점에 관하여 조사하고 논하고자 한다.

  • PDF

Learning to Prevent Inactive Student of Indonesia Open University

  • Tama, Bayu Adhi
    • Journal of Information Processing Systems
    • /
    • 제11권2호
    • /
    • pp.165-172
    • /
    • 2015
  • The inactive student rate is becoming a major problem in most open universities worldwide. In Indonesia, roughly 36% of students were found to be inactive, in 2005. Data mining had been successfully employed to solve problems in many domains, such as for educational purposes. We are proposing a method for preventing inactive students by mining knowledge from student record systems with several state of the art ensemble methods, such as Bagging, AdaBoost, Random Subspace, Random Forest, and Rotation Forest. The most influential attributes, as well as demographic attributes (marital status and employment), were successfully obtained which were affecting student of being inactive. The complexity and accuracy of classification techniques were also compared and the experimental results show that Rotation Forest, with decision tree as the base-classifier, denotes the best performance compared to other classifiers.