International Journal of Computer Science & Network Security
/
제23권10호
/
pp.135-146
/
2023
An effective educational program warrants the inclusion of an innovative construction which enhances the higher education efficacy in such a way that accelerates the achievement of desired results and reduces the risk of failures. Educational Decision Support System (EDSS) has currently been a hot topic in educational systems, facilitating the pupil result monitoring and evaluation to be performed during their development. Insufficient information systems encounter trouble and hurdles in making the sufficient advantage from EDSS owing to the deficit of accuracy, incorrect analysis study of the characteristic, and inadequate database. DMTs (Data Mining Techniques) provide helpful tools in finding the models or forms of data and are extremely useful in the decision-making process. Several researchers have participated in the research involving distributed data mining with multi-agent technology. The rapid growth of network technology and IT use has led to the widespread use of distributed databases. This article explains the available data mining technology and the distributed data mining system framework. Distributed Data Mining approach is utilized for this work so that a classifier capable of predicting the success of students in the economic domain can be constructed. This research also discusses the Intelligent Knowledge Base Distributed Data Mining framework to assess the performance of the students through a mid-term exam and final-term exam employing Multi-agent system-based educational mining techniques. Using single and ensemble-based classifiers, this study intends to investigate the factors that influence student performance in higher education and construct a classification model that can predict academic achievement. We also discussed the importance of multi-agent systems and comparative machine learning approaches in EDSS development.
Hilal, Anwar;Zamani, Abu Sarwar;Ahmad, Sultan;Rizwanullah, Mohammad
International Journal of Computer Science & Network Security
/
제21권4호
/
pp.209-213
/
2021
Data mining is the application of specific algorithms for extracting patterns from data and KDD is the automated or convenient extraction of patterns representing knowledge implicitly stored or captured in large databases, data warehouses, the Web, other massive information repositories or data streams. Data mining can be used for decision making in educational system. But educational institution does not use any knowledge discovery process approach on these data; this knowledge can be used to increase the quality of education. The problem was happening in the educational management system, but to make education system more flexible and discover knowledge from it huge data, we will use data mining techniques to solve problem.
본 연구는 초 중등 교육정보 공시를 통하여 전국 특성화고등학교의 학교단위별 자료(2012년도)를 파악한 후 데이터 마이닝 기법을 활용해 교육성과에 대한 분석을 실시하였다. 특성화고등학교의 교육성과는 취업률, 진학률, 기능경기대회 입상성적으로 정하였다. 분석은 크게 두 가지로 나뉘는데 첫 번째, 학교현황에 따라 각 교육성과에 유의한 차이가 있는지 알아보고 두 번째, 교육활동을 포함한 학교의 세부적 사항 중 각 교육성과에 영향을 미치는 요인을 탐색하였다.
웹 사용 패턴 발견은 웹 로그 데이터를 사용하는 고급 수단이며 웹 로그 데이터 마이닝에 데이터 마이닝 기술을 적용한 특정 응용이다. 교육 분야에서 데이터 마이닝 (DM)은 데이터 마이닝 기술을 교육 데이터 (대학의 웹 로그, e-러닝, 적응형 하이퍼미디어 및 지능형 튜터링시스템 등)에 적용한다. 따라서 교육 연구 문제를 해결하기 위해 이러한 유형의 데이터를 분석하는 것이 목표이다. 본 논문에서는 대학의 웹 로그 데이터가 데이터 마이닝의 연구 대상으로 사용되어 진다. 데이터베이스 OLAP 기술을 사용하여 웹 로그 데이터가 데이터 마이닝에 사용될 수 있는 데이터 형식으로 사전 처리되고 그 처리 결과가 MSSQL에 저장된다. 동시에 처리 된 웹 로그 레코드를 기반으로 기본 데이터 통계 및 분석이 완료된다. 또한 웹 사용 패턴 마이닝의 Apriori Algorithm 및 구현 프로세스를 소개하고 Python 개발 환경에서 Apriori Algorithm 프로그램을 개발했다. 그런 다음 Apriori Algorithm의 성능을 보이고 웹 사용자 액세스 패턴의 마이닝을 실현했다. 이 연구 결과는 교육 시스템 개발에 패턴을 적용하는데 중요한 이론적 의미를 갖는다. 다음 연구로는 분산 컴퓨팅 환경에서 Apriori Algorithm의 성능 향상을 연구하는 것이다.
International Journal of Computer Science & Network Security
/
제24권1호
/
pp.71-84
/
2024
This paper presents a critical analysis of the current application of big data in higher education and how Learning Analytics (LA), and Educational Data Mining (EDM) are helping to shape learning in higher education institutions that have applied the concepts successfully. An extensive literature review of Learning Analytics, Educational Data Mining, Learning Management Systems, Informal Learning and Online Social Networks are presented to understand their usage and trends in higher education pedagogy taking advantage of 21st century educational technologies and platforms. The roles of and benefits of these technologies in teaching and learning are critically examined. Imperatively, this study provides vital information for education stakeholders on the significance of establishing a teaching and learning agenda that takes advantage of today's educational relevant technologies to promote teaching and learning while also acknowledging the difficulties of 21st-century learning. Aside from the roles and benefits of these technologies, the review highlights major challenges and research needs apparent in the use and application of these technologies. It appears that there is lack of research understanding in the challenges and utilization of data effectively for learning analytics, despite the massive educational data generated by high institutions. Also due to the growing importance of LA, there appears to be a serious lack of academic research that explore the application and impact of LA in high institution, especially in the context of informal online social network learning. In addition, high institution managers seem not to understand the emerging trends of LA which could be useful in the running of higher education. Though LA is viewed as a complex and expensive technology that will culturally change the future of high institution, the question that comes to mind is whether the use of LA in relation to informal learning in online social network is really what is expected? A study to analyze and evaluate the elements that influence high usage of OSN is also needed in the African context. It is high time African Universities paid attention to the application and use of these technologies to create a simplified learning approach occasioned by the use of these technologies.
학과의 교육목표 달성을 위해서는 순환형 자율 개선 구조를 운영하기 위한 시스템이 필요하며, 설문조사 분석을 통한 교육시스템의 개선은 교육목표 달성을 위한 중요한 요소 중의 하나이다. 일반적으로 설문조사 분석에서는 항목별로 통계적인 분포를 조사하거나 두 개의 항목간의 연관성을 조사하는 분석 방법이 주로 사용된다. 그러나 이러한 분석 방법은 다양한 항목들 간의 상호 연관성을 분석하지 못하는 한계가 있으므로 보다 심층적인 분석방법이 필요하다. 본 논문에서는 데이터마이닝 기법을 적용한 심층적인 분석 기법을 제시한다. 데이터마이닝이란 대용량의 데이터에 숨겨져 있는 지식을 추출해 내는 기법으로 설문분석에도 효과적으로 이용될 수 있다. 본 분석에서는 Clementine 데이터마이닝 도구를 사용하여 숭실대학교 컴퓨터학과의 재학생에 대한 설문자료에 대한 심층 분석을 수행하였다. 분석의 결과로 '학점'과 다른 항목들과의 연관성을 계층적으로 분석할 수 있었으며, '학점'에 대한 학생상담과 학과의 교육 프로그램 개선에 실제적으로 사용할 수 있는 유용한 정보들을 획득할 수 있었다.
본 연구에서는 공공데이터포털에서 제공하는 교육관련 데이터를 검색하고 토픽모델링 기법을 활용한 분류를 통해 어떠한 데이터의 종류가 구축되어 있으며 활용이 가능한지를 살펴보고자 하였다. 공공데이터포털의 데이터에 대하여 분류체계를 기준으로 교육분야의 파일데이터는 3,072건이 수집되었으며, 검색어를 활용하여 '교육'을 검색하여 나타난 파일데이터 2,361건으로 나타났다. 각각의 데이터셋에 대하여 불용어처리를 실시하고 데이터 전처리를 수행하여 LDA기반 토픽모델링을 활용하여 텍스트마이닝 분석을 실시하였다. 사전에 교육으로 분류된 데이터셋에서는 현재 재학중인 학교급별 학생을 대상으로 지원하는 프로그램과 정보에 대한 내용이 제공되고 있었다. 한편, 교육으로 검색하여 수집된 데이터셋에서는 장애인, 학부모, 노인, 아동 등 평생교육의 관점으로 제공되는 교육 프로그램 및 지원현황이라는 특징이 나타났다. 데이터과학기반의 의사결정 및 문제해결력을 기르기 위해 공공데이터포털이 제공하는 데이터에서 교육과정 및 내용이 충분히 제공되는 것도 좋은 기회가 될 것이다.
Along with the industry growth, engineering colleges in Korea has have a quantitative growth. Many of the policy promotions and budgets for engineering colleges from the government are supported. And the various monitoring methods to verify their achievement have demanded. This paper deals with the construction of engineering educational statistics system in Korea. It named Korea Engineering Data Management System(K-EDMS). This system is based on the data mining tool and supports data-based decision making for an advanced engineering education service. This paper presents related researches of case studies. Then, we have designed K-EDMS, and constructed 157 cases for engineering colleges of the year 2014.
본 논문에서는 수학을 기반으로 한 데이터베이스의 지식탐사 절차를 통하여 데이터의 선택, 정제, 통합, 변환, 축소, 데이터 마이닝 기법의 선택과 적용 및 모형의 평가에 관한 개념과 방법론을 소개하고 수학의 한 분야로서 통계학의 역할과 적용방법에 관하여 연구하고자 한다. 또한 오늘날 관심이 대상이 되고 있는 데이터 마이닝의 역사와 수학적 배경, 통계 및 정보 기술을 이용한 데이터 마이닝의 주요 모델링 기법, 실용적 응용 분야 및 적용 사례 그리고 데이터 마이닝과 통계의 차이점에 관하여 조사하고 논하고자 한다.
The inactive student rate is becoming a major problem in most open universities worldwide. In Indonesia, roughly 36% of students were found to be inactive, in 2005. Data mining had been successfully employed to solve problems in many domains, such as for educational purposes. We are proposing a method for preventing inactive students by mining knowledge from student record systems with several state of the art ensemble methods, such as Bagging, AdaBoost, Random Subspace, Random Forest, and Rotation Forest. The most influential attributes, as well as demographic attributes (marital status and employment), were successfully obtained which were affecting student of being inactive. The complexity and accuracy of classification techniques were also compared and the experimental results show that Rotation Forest, with decision tree as the base-classifier, denotes the best performance compared to other classifiers.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.