• 제목/요약/키워드: Educational Chatbot

검색결과 17건 처리시간 0.023초

한의학 임상실습교육을 위한 인공지능 기반 환자 챗봇의 사용성과 교육적 효과성 (Usability and Educational Effectiveness of AI-based Patient Chatbot for Clinical Skills Training in Korean Medicine)

  • 한예진
    • Korean Journal of Acupuncture
    • /
    • 제41권1호
    • /
    • pp.27-32
    • /
    • 2024
  • Objectives : This study developed an AI-based patient chatbot and examined the usability and educational effectiveness of the chatbot in the context of Korean medicine education. Methods : The patient chatbot was developed using the AI chatbot builder 'Danbee', and a total of five experts were surveyed and interviewed to determine the usability, effectiveness, advantages, disadvantages, and improvement points of the chatbot. Results : The patient chatbot was found to have high usability and educational effectiveness. The advantages of the patient chatbot were 1) it provided students with practical experience in performing clinical skills, 2) it provided instructors with assessment materials while reducing their teaching burden, and 3) it could be effectively used for horizontal and vertical integration education. The disadvantages and improvements of the patient chatbot were 1) improving the accuracy of intention inference, 2) providing students with specific instructions for problem-solving activities, and 3) providing assessment results and feedback about students' activities. Conclusions : This study is significant in that it proposes a new training method to overcome the limitations of the existing doctor-patient simulation. It is hoped that this study will stimulate further research on the improvement of students' clinical skills using artificial intelligence.

학습용 챗봇 소프트웨어 사용 품질 특성의 중요도 연구: AHP기법을 활용하여 (A Study on the Importance of Software Quality-in-use for Educational Chatbot: Using the AHP Method)

  • 민윤정;안재경
    • 한국IT서비스학회지
    • /
    • 제23권5호
    • /
    • pp.59-72
    • /
    • 2024
  • Recent advancements in IT technology and infrastructure have led to the widespread application of AI chatbots across various fields, including education, where they have shown effectiveness in improving classroom focus and achievement [1][2]. This study analyzes the importance of quality-in-use for AI chatbots in elementary Korean language learning based on ISO/IEC 25000 Quality-in-use standards, aiming to provide quality evaluation criteria for future educational chatbot development. The research methodology involved a two-tier hierarchy of 5 main characteristics and 13 sub-characteristics of quality-in-use, with surveys conducted among industry professionals and instructors after preliminary investigations. Results showed that situational adaptability, effectiveness, and efficiency were prioritized in the main characteristics. In sub-characteristics, situational completeness, learning accuracy, and flexibility were top-ranked. Instructors emphasized the importance of risk mitigation, reflecting their concern for reducing private education costs and improving learning environments. Industry professionals prioritized completeness in chatbot outputs. These findings suggest that prioritizing instructor-valued features in subject-based learning chatbots can enhance their utility and effectiveness in educational settings. The study also highlights the potential for leveraging differences in quality evaluation priorities between industry professionals and instructors in developing learning chatbots

GPTs 기반 예비 교사 교육 맞춤형 챗봇 개발 및 수학교육적 성능 분석 (Development of a customized GPTs-based chatbot for pre-service teacher education and analysis of its educational performance in mathematics)

  • 권미선
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제63권3호
    • /
    • pp.467-484
    • /
    • 2024
  • 생성형 인공지능의 급속한 발전으로 이제 프로그래머의 도움 없이 누구나 개인 맞춤형 챗봇을 제작하고 이를 무료로 활용할 수 있는 시대가 열렸다. 본 연구는 예비 교사 교육을 목적으로, OpenAI의 GPTs 기반 맞춤형 챗봇을 개발하였다. 개발된 맞춤형 챗봇은 대규모 언어 모델(Large Language Model, LLM)을 토대로한 생성형 AI를 이용했기 때문에 그 응답 또한 확률적이므로, 맞춤형 챗봇의 개발 절차뿐만 아니라 그 응답이 적절한지에 대한 점검이 필요하다. 이를 위해 예비 교사를 지도하는 교수자들이 맞춤형 챗봇의 응답에 대한 타당성을 5점 척도로 분석하여 수학교육적 성능을 살펴보았다. 동일한 질문에 대한 범용적인 챗봇인 ChatGPT, 맞춤형 챗봇인 GPT, 그리고 초등수학교육 전문가의 응답을 교수자들이 분석한 결과, 초등수학교육 전문가의 응답은 평균 4.52점을, 맞춤형 챗봇인 GPT는 평균 3.73점을 받아 맞춤형 챗봇인 GPT의 응답은 초등수학교육 전문가의 수준에는 미치지 못하는 것으로 나타났다. 하지만 5점 척도에서 보통 이상으로 '적절하다'에 가까운 점수를 받아 맞춤형 챗봇인 GPT의 교육적 활용 가능성을 확인할 수 있었다. 한편, 범용적인 챗봇인 ChatGPT의 응답은 평균 2.86점으로 낮은 평가를 받았으며, 예비 교사를 지도하는 교수자들은 답변 내용이 체계적이지 않고 일반적인 수준에 머물러 있다고 평가하였다. 이에 범용적인 챗봇인 ChatGPT는 수학교육에 한정하여 사용하기에는 어려움이 있어 보인다. 기존의 맞춤형 챗봇이 교육적 효과를 입증했음에도 불구하고, 그 제작 과정에서 요구되는 시간과 비용이 큰 장애물로 작용해왔다. 그러나 이제 GPTs 서비스를 통해 누구나 손쉽게 교수자 및 학습자에게 적절한 맞춤형 챗봇을 제작할 수 있으며, 그 응답이 일정 수준 이상의 수학교육적 타당성을 보여 수학교육의 다양한 측면에서 효과적으로 활용할 수 있을 것이다.

Effects of the use of a conversational artificial intelligence chatbot on medical students' patient-centered communication skill development in a metaverse environment

  • Hyeonmi Hong;Sunghee Shin
    • Journal of Medicine and Life Science
    • /
    • 제21권3호
    • /
    • pp.92-101
    • /
    • 2024
  • This study investigated how the use of a conversational artificial intelligence (AI) chatbot improved medical students' patient-centered communication (PCC) skills and how it affected their motivation to learn using innovative interactive tools such as AI chatbots throughout their careers. This study adopted a one-group post-test-only design to investigate the impact of AI chatbot-based learning on medical students' PCC skills, their learning motivation with AI chatbots, and their perception towards the use of AI chatbots in their learning. After a series of classroom activities, including metaverse exploration, AI chatbot-based learning activities, and classroom discussions, 43 medical students completed three surveys that measured their motivation to learn using AI tools for medical education, their perception towards the use of AI chatbots in their learning, and their self-assessment of their PCC skills. Our findings revealed significant correlations among learning motivation, PCC scores, and perception variables. Notably, the perception towards AI chatbot-based learning and AI chatbot learning motivation showed a very strong positive correlation (r=0.72), indicating that motivated students were more likely to perceive chatbots as beneficial educational tools. Additionally, a moderate correlation between motivation and self-assessed PCC skills (r=0.54) indicated that students motivated to use AI chatbots tended to rate their PCC skills more favorably. Similarly, a positive relationship (r=0.68) between students' perceptions of chatbot usage and their self-assessed PCC skills indicated that enhancing students' perceptions of AI tools could lead to better educational outcomes.

프롬프트 엔지니어링(Prompt Engineering)을 활용한 '진료수행시험 연습용 챗봇(CPX Practicing Chatbot)' 시범 개발 (Pilot Development of a 'Clinical Performance Examination (CPX) Practicing Chatbot' Utilizing Prompt Engineering)

  • 김준동;이혜윤;김지환;김창업
    • 대한한의학회지
    • /
    • 제45권1호
    • /
    • pp.203-214
    • /
    • 2024
  • Objectives: In the context of competency-based education emphasized in Korean Medicine, this study aimed to develop a pilot version of a CPX (Clinical Performance Examination) Practicing Chatbot utilizing large language models with prompt engineering. Methods: A standardized patient scenario was acquired from the National Institute of Korean Medicine and transformed into text format. Prompt engineering was then conducted using role prompting and few-shot prompting techniques. The GPT-4 API was employed, and a web application was created using the gradio package. An internal evaluation criterion was established for the quantitative assessment of the chatbot's performance. Results: The chatbot was implemented and evaluated based on the internal evaluation criterion. It demonstrated relatively high correctness and compliance. However, there is a need for improvement in confidentiality and naturalness. Conclusions: This study successfully piloted the CPX Practicing Chatbot, revealing the potential for developing educational models using AI technology in the field of Korean Medicine. Additionally, it identified limitations and provided insights for future developmental directions.

수업 참여 활성화를 위한 챗봇과 슬라이드 위젯 기반 교실응답시스템 (Chatbot and Slide Widget-based Classroom Response System to Promote Classroom Participation)

  • 손의성
    • 한국멀티미디어학회논문지
    • /
    • 제22권8호
    • /
    • pp.940-949
    • /
    • 2019
  • Classroom response systems (CRS) have been proven to have positive educational effects on student engagement and participation by allowing immediate feedback to both students and instructors. We explore the use of a chatbot and slide widget-based CRS to overcome some of the challenges of existing mobile-based CRSs while retaining their advantages. Our system uses widely available instant messaging services and operates web-based slide widgets that can be seamlessly integrated into instructors' slides to visualize student feedback in various formats. The student survey results indicate that our system is as effective as conventional CRSs in promoting student engagement and participation.

언택트 기술 환경에서의 지능형 헬스 어드바이저 모델 접근 방안 (An Approach of Cognitive Health Advisor Model for Untact Technology Environment)

  • 황태호;이강윤
    • 한국빅데이터학회지
    • /
    • 제5권1호
    • /
    • pp.139-145
    • /
    • 2020
  • 4차산업혁명 시대에 인공지능 API에 기반한 정보의 활용은 산업과 생활에 많은 영향을 주고 있다. 특히, 의료분야에서 인공지능을 이용한 데이터 활용은 사회에 많은 변화와 영향을 미칠 것이다. 이 논문은 "Cognitive Health Advisor model(CHA model)"을 구현하기 위하여 필요한 구성요소를 연구하고, 이를 기반으로 "chatbot 이용한 CHA model"을 구현하는데 있다. 개방형 Cognitive 챗봇을 이용하여 일상 생활에서 변화되는 사용자의 건강상태를 파악하고 분석하고 생체센서와 챗봇 상담으로 분석한 사용자의 건강정보는 챗봇을 통하여 사용자에게 정보를 전달하여 사용자의 건강증진을 위한 교육정보를 제공하는 지능형 헬스 어드바이저 모델을 구현한다. 이 구현을 통하여 향후 활용 가능성을 확인하고 연구방향을 제시하고자 한다.

인공지능 문장 분류 모델 Sentence-BERT 기반 학교 맞춤형 고등학교 통합과학 질문-답변 챗봇 -개발 및 1년간 사용 분석- (A School-tailored High School Integrated Science Q&A Chatbot with Sentence-BERT: Development and One-Year Usage Analysis)

  • 민경모;유준희
    • 한국과학교육학회지
    • /
    • 제44권3호
    • /
    • pp.231-248
    • /
    • 2024
  • 본 연구에서는 오픈소스 소프트웨어와 인공지능 문서 분류 모델인 한국어 Sentence-BERT로 고등학교 1학년 통합과학 질문-답변 챗봇을 제작하고 2023학년도 1년 동안 독립형 서버에서 운영했다. 챗봇은 Sentence-BERT 모델로 학생의 질문과 가장 유사한 질문-답변 쌍 6개를 찾아 캐러셀 형태로 출력한다. 질문-답변 데이터셋은 인터넷에 공개된 자료를 수집하여 초기 버전을 구축하였고, 챗봇을 1년 동안 운영하면서 학생의 의견과 사용성을 고려하여 자료를 정제하고 새로운 질문-답변 쌍을 추가했다. 2023학년도 말에는 총 30,819개의 데이터셋을 챗봇에 통합하였다. 학생은 챗봇을 1년 동안 총 3,457건 이용했다. 챗봇 사용 기록을 빈도분석 및 시계열 분석한 결과 학생은 수업 중 교사가 챗봇 사용을 유도할 때 챗봇을 이용했고 평소에는 방과 후에 자습하면서 챗봇을 활용했다. 학생은 챗봇에 한 번 접속하여 평균적으로 2.1~2.2회 정도 질문했고, 주로 사용한 기기는 휴대폰이었다. 학생이 챗봇에 입력한 용어를 추출하고자 한국어 형태소 분석기로 명사와 용언을 추출하여 텍스트 마이닝을 진행한 결과 학생은 과학 질문 외에도 시험 범위 등의 학교생활과 관련된 용어를 자주 입력했다. 학생이 챗봇에 자주 물어본 주제를 추출하고자 Sentence-BERT 기반의 BERTopic으로 학생의 질문을 두 차례 범주화하여 토픽 모델링을 진행했다. 전체 질문 중 88%가 35가지 주제로 수렴되었고, 학생이 챗봇에 주로 물어보는 주제를 추출할 수 있었다. 학년말에 학생을 대상으로 한 설문에서 챗봇이 캐러셀 형태로 결과를 출력하는 형태가 학습에 효과적이었고, 통합과학 학습과 학습 목적 이외의 궁금증이나 학교생활과 관련된 물음에 답해주는 역할을 수행했음을 확인할 수 있었다. 본 연구는 공교육 현장에서 학생이 실제로 활용하기에 적합한 챗봇을 개발하여 학생이 장기간에 걸쳐 챗봇을 사용하는 과정에서 얻은 데이터를 분석함으로써 학생의 요구를 충족할 수 있는 챗봇의 교육적 활용 가능성을 확인했다는 점에 의의가 있다.

Exploring the Possibility of Using Chatbots as Educational Tools for School Libraries

  • Seong-Kwan Lim
    • Journal of Information Science Theory and Practice
    • /
    • 제12권3호
    • /
    • pp.1-13
    • /
    • 2024
  • The purpose of this study is to investigate the possibility of using chatbots as a school library educational tool. In order to achieve the purpose of the study, 116 librarian teachers first investigated the types and contents of education conducted in the school library setting and the perception of chatbots there. In addition, 15 librarians (five elementary, five middle, and five high school) were asked to complete a structured questionnaire after using Google's Bard, Microsoft's Bing, and OpenAI's Nova to find out if it is possible to use chatbots in school library education. As a result, user and reading education chatbots were found to be common in school libraries, and 99% of librarians knew about them in some detail. However, the average chatbot performance by area was 2.9 out of 5 (2.6 points being the lowest). Nevertheless, chatbots are being developed utilizing deep learning methodologies and have excellent performance, and are very effective for content-based library education through problem-solving activities.

Perceptions of preservice teachers on AI chatbots in English education

  • Yang, Jaeseok
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제14권1호
    • /
    • pp.44-52
    • /
    • 2022
  • With recent scientific advances and growing interest in AI technologies, AI-based chatbots have been viewed as a practical learning aid for English language development. The purpose of this study is to examine preservice teachers' perceptions on the potential benefits of employing AI chatbots in English instruction and its pedagogical aspects. 28 preservice teachers majoring in English education were asked to use Kuki chatbots for a week with a guidance of a researcher and then report on their perceptions of AI chatbots in terms of perceived usefulness after use, applicability, and educational benefits and drawbacks. Emerging codes and themes were identified and evaluated using Thematic Analysis(TA) based on qualitative data from surveys and interviews. The findings show that six emerging themes were identified, encompassing perspectives on teacher, learner, communication, linguistic, affective, and assessment. The overall findings of this study revealed that AI-based chatbots can play a significant role as learning tools for stimulating interactive communication in a target language. Most preservice primary teachers acknowledge that AI chatbots can be useful as teaching and learning aids for both teachers and students. Furthermore, when applying various learner data to chatbot technology, such as learner assessment and diagnosis, a guided approach is necessary to perform a conversation appropriate for the learner's level and characteristics. Finally, as chatbots have a variety of benefits in terms of affective aspects, they may improve EFL learners' confidence in speaking English and learning motivation.