Deriving adoption strategies of deep learning open source framework through case studies (딥러닝 오픈소스 프레임워크의 사례연구를 통한 도입 전략 도출)
-
- Journal of Intelligence and Information Systems
- /
- v.26 no.4
- /
- pp.27-65
- /
- 2020
Many companies on information and communication technology make public their own developed AI technology, for example, Google's TensorFlow, Facebook's PyTorch, Microsoft's CNTK. By releasing deep learning open source software to the public, the relationship with the developer community and the artificial intelligence (AI) ecosystem can be strengthened, and users can perform experiment, implementation and improvement of it. Accordingly, the field of machine learning is growing rapidly, and developers are using and reproducing various learning algorithms in each field. Although various analysis of open source software has been made, there is a lack of studies to help develop or use deep learning open source software in the industry. This study thus attempts to derive a strategy for adopting the framework through case studies of a deep learning open source framework. Based on the technology-organization-environment (TOE) framework and literature review related to the adoption of open source software, we employed the case study framework that includes technological factors as perceived relative advantage, perceived compatibility, perceived complexity, and perceived trialability, organizational factors as management support and knowledge & expertise, and environmental factors as availability of technology skills and services, and platform long term viability. We conducted a case study analysis of three companies' adoption cases (two cases of success and one case of failure) and revealed that seven out of eight TOE factors and several factors regarding company, team and resource are significant for the adoption of deep learning open source framework. By organizing the case study analysis results, we provided five important success factors for adopting deep learning framework: the knowledge and expertise of developers in the team, hardware (GPU) environment, data enterprise cooperation system, deep learning framework platform, deep learning framework work tool service. In order for an organization to successfully adopt a deep learning open source framework, at the stage of using the framework, first, the hardware (GPU) environment for AI R&D group must support the knowledge and expertise of the developers in the team. Second, it is necessary to support the use of deep learning frameworks by research developers through collecting and managing data inside and outside the company with a data enterprise cooperation system. Third, deep learning research expertise must be supplemented through cooperation with researchers from academic institutions such as universities and research institutes. Satisfying three procedures in the stage of using the deep learning framework, companies will increase the number of deep learning research developers, the ability to use the deep learning framework, and the support of GPU resource. In the proliferation stage of the deep learning framework, fourth, a company makes the deep learning framework platform that improves the research efficiency and effectiveness of the developers, for example, the optimization of the hardware (GPU) environment automatically. Fifth, the deep learning framework tool service team complements the developers' expertise through sharing the information of the external deep learning open source framework community to the in-house community and activating developer retraining and seminars. To implement the identified five success factors, a step-by-step enterprise procedure for adoption of the deep learning framework was proposed: defining the project problem, confirming whether the deep learning methodology is the right method, confirming whether the deep learning framework is the right tool, using the deep learning framework by the enterprise, spreading the framework of the enterprise. The first three steps (i.e. defining the project problem, confirming whether the deep learning methodology is the right method, and confirming whether the deep learning framework is the right tool) are pre-considerations to adopt a deep learning open source framework. After the three pre-considerations steps are clear, next two steps (i.e. using the deep learning framework by the enterprise and spreading the framework of the enterprise) can be processed. In the fourth step, the knowledge and expertise of developers in the team are important in addition to hardware (GPU) environment and data enterprise cooperation system. In final step, five important factors are realized for a successful adoption of the deep learning open source framework. This study provides strategic implications for companies adopting or using deep learning framework according to the needs of each industry and business.
The basic purpose of this study is to investigate perceived quality and service personal value affecting the result of long-term relationship between service buyers and suppliers. This research presented a constructive model(perceived quality affecting the service personal value and the moderate effect of NFC) in the on off line and then propose the research model base on prior researches and studies about relationships among components of service. Data were gathered from respondents who visit at the education service market. For this study, Data were analyzed by AMOS 7.0. We integrate the literature on services marketing with researches on personal values and perceived quality. The SERPVAL scale presented here allows for the creation of a common ground for assessing service personal values, giving a clear understanding of the key value dimensions behind service choice and usage. It will lead to a focus of future research in services marketing, extending knowledge in the field and stimulating further empirical research on service personal values. At the managerial level, as a tool the SERPVAL scale should allow practitioners to evaluate and improve the value of a service, and consequently, to define strategies and actions to address services for customers based on their fundamental personal values. Through qualitative and empirical research, we find that the service quality construct conforms to the structure of a second-order factor model that ties service quality perceptions to distinct and actionable dimensions: outcome, interaction, and environmental quality. In turn, each has two subdimensions that define the basis of service quality perceptions. The authors further suggest that for each of these subdimensions to contribute to improved service quality perceptions, the quality received by consumers must be perceived to be reliable, responsive, and empathetic. Although the service personal value may be found in researches that explore individual values and their consequences for consumer behavior, there is no established operationalization of a SERPVAL scale. The inexistence of an established scale, duly adapted in order to understand and analyze personal values behind services usage, exposes the need of a measurement scale with such a purpose. This need has to be rooted, however, in a conceptualization of the construct being scaled. Service personal values can be defined as a customer's overall assessment of the use of a service based on the perception of what is achieved in terms of his own personal values. As consumer behaviors serve to show an individual's values, the use of a service can also be a way to fulfill and demonstrate consumers'personal values. In this sense, a service can provide more to the customer than its concrete and abstract attributes at both the attribute and the quality levels, and more than its functional consequences at the value level. Both values and services literatures agree, that personal value is the highest-level concept, followed by instrumental values, attitudes and finally by product attributes. Purchasing behaviors are agreed to be the end result of these concepts' interaction, with personal values taking a major role in the final decision process. From both consumers' and practitioners' perspectives, values are extremely relevant, as they are desirable goals that serve as guiding principles in people's lives. While building on previous research, we propose to assess service personal values through three broad groups of individual dimensions; at the self-oriented level, we use (1) service value to peaceful life (SVPL) and, at the social-oriented level, we use (2) service value to social recognition (SVSR), and (3) service value to social integration (SVSI). Service value to peaceful life is our first dimension. This dimension emerged as a combination of values coming from the RVS scale, a scale built specifically to assess general individual values. If a service promotes a pleasurable life, brings or improves tranquility, safety and harmony, then its user recognizes the value of this service. Generally, this service can improve the user's pleasure of life, since it protects or defends the consumer from threats to life or pressures on it. While building upon both the LOV scale, a scale built specifically to assess consumer values, and the RVS scale for individual values, we develop the other two dimensions: SVSR and SVSI. The roles of social recognition and social integration to improve service personal value have been seriously neglected. Social recognition derives its outcome utility from its predictive utility. When applying this underlying belief to our second dimension, SVSR, we assume that people use a service while taking into consideration the content of what is delivered. Individuals consider whether the service aids in gaining respect from others, social recognition and status, as well as whether it allows achieving a more fulfilled and stimulating life, which might then be revealed to others. People also tend to engage in behavior that receives social recognition and to avoid behavior that leads to social disapproval, and this contributes to an individual's social integration. This leads us to the third dimension, SVSI, which is based on the fact that if the consumer perceives that a service strengthens friendships, provides the possibility of becoming more integrated in the group, or promotes better relationships at the social, professional or family levels, then the service will contribute to social integration, and naturally the individual will recognize personal value in the service. Most of the research in business values deals with individual values. However, to our knowledge, no study has dealt with assessing overall personal values as well as their dimensions in a service context. Our final results show that the scales adapted from the Schwartz list were excluded. A possible explanation is that although Schwartz builds on Rokeach work in order to explore individual values, its dimensions might be especially focused on analyzing societal values. As we are looking for individual dimensions, this might explain why the values inspired by the Schwartz list were excluded from the model. The hierarchical structure of the final scale presented in this paper also presents theoretical implications. Although we cannot claim to definitively capture the dimensions of service personal values, we believe that we come close to capturing these overall evaluations because the second-order factor extracts the underlying commonality among dimensions. In addition to obtaining respondents' evaluations of the dimensions, the second-order factor model captures the common variance among these dimensions, reflecting the respondents' overall assessment of service personal values. Towards this fact, we expect that the service personal values conceptualization and measurement scale presented here contributes to both business values literature and the service marketing field, allowing for the delineation of strategies for adding value to services. This new scale also presents managerial implications. The SERPVAL dimensions give some guidance on how to better pursue a highly service-oriented business strategy. Indeed, the SERPVAL scale can be used for benchmarking purposes, as this scale can be used to identify whether or not a firms' marketing strategies are consistent with consumers' expectations. Managerial assessment of the personal values of a service might be extremely important because it allows managers to better understand what customers want or value. Thus, this scale allows us to identify what services are really valuable to the final consumer; providing knowledge for making choices regarding which services to include. Traditional approaches have focused their attention on service attributes (as quality) and service consequences(as service value), but personal values may be an important set of variables to be considered in understanding what attracts consumers to a certain service. By using the SERPVAL scale to assess the personal values associated with a services usage, managers may better understand the reasons behind services' usage, so that they may handle them more efficiently. While testing nomological validity, our empirical findings demonstrate that the three SERPVAL dimensions are positively and significantly associated with satisfaction. Additionally, while service value to social integration is related only with loyalty, service value to peaceful life is associated with both loyalty and repurchase intent. It is also interesting and surprising that service value to social recognition appears not to be significantly linked with loyalty and repurchase intent. A possible explanation is that no mobile service provider has yet emerged in the market as a luxury provider. All of the Portuguese providers are still trying to capture market share by means of low-end pricing. This research has implications for consumers as well. As more companies seek to build relationships with their customers, consumers are easily able to examine whether these relationships provide real value or not to their own lives. The selection of a strategy for a particular service depends on its customers' personal values. Being highly customer-oriented means having a strong commitment to customers, trying to create customer value and understanding customer needs. Enhancing service distinctiveness in order to provide a peaceful life, increase social recognition and gain a better social integration are all possible strategies that companies may pursue, but the one to pursue depends on the outstanding personal values held by the service customers. Data were gathered from 284 respondents in the korean discount store and online shopping mall market. This research proposed 3 hypotheses on 6 latent variables and tested through structural equation modeling. 6 alternative measurements were compared through statistical significance test of the 6 paths of research model and the overall fitting level of structural equation model. and the result was successful. and Perceived quality more positively influences service personal value when NFC is high than when no NFC is low in the off-line market. The results of the study indicate that service quality is properly modeled as an antecedent of service personal value. We consider the research and managerial implications of the study and its limitations. In sum, by knowing the dimensions a consumer takes into account when choosing a service, a better understanding of purchasing behaviors may be realized, guiding managers toward customers expectations. By defining strategies and actions that address potential problems with the service personal values, managers might ultimately influence their firm's performance. we expect to contribute to both business values and service marketing literatures through the development of the service personal value. At a time when marketing researchers are challenged to provide research with practical implications, it is also believed that this framework may be used by managers to pursue service-oriented business strategies while taking into consideration what customers value.
Objectives: This study was done to find out fatigue and self-reported physical symptoms of Vinylhouse farmers. The results of this study could be used as a basic data to develop health promotion program for Vinylhouse farmers who are suffering from fatigue and physical symptoms. Methods: The 166 respondents, who were working in Vinylhouse and were living in a remoted area where the primary health post located, were participated in this study. Thirty: 30 items of self-reported fatigue scale was used to evaluate the farmers fatigue level which made by Japanese industrial and hygenic association(1988). Twenty four: 24 items of index used by researcher for self-reported physical symptoms was from Lee In Bae's(1999) modified Index which was originated from Cornell Medical Index(1949). Another questionnaires used in this study were developed by researcher through related documents. Results: The results of this study were as follows; Fatigue scores were high in accordance with women(t=-2.212, p<0.05), worse recognized health state(F=20.610, p<.001), lack of sleeping hours(F=3.937, p<0.05), eat irregularly(t=-3.883, p<0.001), don't take a bath after application of chemical(t=-2.950, p<0.01), working time per a day(F=5.633, p<0.01) & working time per a day in Vinylhouse(F=5.247, p<0.01) were long. Subjective physical symptoms were high in accordance with women(t=-3.176, p<0.01), worse recognized health state(F=35.335, p<0.001), and low education(F=3.467, p<0.05). eat irregularly(t=-3.384, p<0.01), alcohol drinking(t=-2.389, p<0.05). When farmers don't take a bath after application of chemical show high(t=-3.188, p<0.01). As a result, the factors affecting to Vinylhouse worker's health were irregular diet habit, scarce exercise, lack of proper rest, symptoms oriented from Vinylhouse work in contaminated environment with high temperature and humidity. Conclusions: Based on this study, health promotion program is necessary for Vinylhouse workers. Also, the development of continuously practical strategy of healthy life style including exercise and comprehensive health promotion program considered the country's social and cultural background are needed.
To survive in the global competitive environment, enterprise should be able to solve various problems and find the optimal solution effectively. The big-data is being perceived as a tool for solving enterprise problems effectively and improve competitiveness with its' various problem solving and advanced predictive capabilities. Due to its remarkable performance, the implementation of big data systems has been increased through many enterprises around the world. Currently the big-data is called the 'crude oil' of the 21st century and is expected to provide competitive superiority. The reason why the big data is in the limelight is because while the conventional IT technology has been falling behind much in its possibility level, the big data has gone beyond the technological possibility and has the advantage of being utilized to create new values such as business optimization and new business creation through analysis of big data. Since the big data has been introduced too hastily without considering the strategic value deduction and achievement obtained through the big data, however, there are difficulties in the strategic value deduction and data utilization that can be gained through big data. According to the survey result of 1,800 IT professionals from 18 countries world wide, the percentage of the corporation where the big data is being utilized well was only 28%, and many of them responded that they are having difficulties in strategic value deduction and operation through big data. The strategic value should be deducted and environment phases like corporate internal and external related regulations and systems should be considered in order to introduce big data, but these factors were not well being reflected. The cause of the failure turned out to be that the big data was introduced by way of the IT trend and surrounding environment, but it was introduced hastily in the situation where the introduction condition was not well arranged. The strategic value which can be obtained through big data should be clearly comprehended and systematic environment analysis is very important about applicability in order to introduce successful big data, but since the corporations are considering only partial achievements and technological phases that can be obtained through big data, the successful introduction is not being made. Previous study shows that most of big data researches are focused on big data concept, cases, and practical suggestions without empirical study. The purpose of this study is provide the theoretically and practically useful implementation framework and strategies of big data systems with conducting comprehensive literature review, finding influencing factors for successful big data systems implementation, and analysing empirical models. To do this, the elements which can affect the introduction intention of big data were deducted by reviewing the information system's successful factors, strategic value perception factors, considering factors for the information system introduction environment and big data related literature in order to comprehend the effect factors when the corporations introduce big data and structured questionnaire was developed. After that, the questionnaire and the statistical analysis were performed with the people in charge of the big data inside the corporations as objects. According to the statistical analysis, it was shown that the strategic value perception factor and the inside-industry environmental factors affected positively the introduction intention of big data. The theoretical, practical and political implications deducted from the study result is as follows. The frist theoretical implication is that this study has proposed theoretically effect factors which affect the introduction intention of big data by reviewing the strategic value perception and environmental factors and big data related precedent studies and proposed the variables and measurement items which were analyzed empirically and verified. This study has meaning in that it has measured the influence of each variable on the introduction intention by verifying the relationship between the independent variables and the dependent variables through structural equation model. Second, this study has defined the independent variable(strategic value perception, environment), dependent variable(introduction intention) and regulatory variable(type of business and corporate size) about big data introduction intention and has arranged theoretical base in studying big data related field empirically afterwards by developing measurement items which has obtained credibility and validity. Third, by verifying the strategic value perception factors and the significance about environmental factors proposed in the conventional precedent studies, this study will be able to give aid to the afterwards empirical study about effect factors on big data introduction. The operational implications are as follows. First, this study has arranged the empirical study base about big data field by investigating the cause and effect relationship about the influence of the strategic value perception factor and environmental factor on the introduction intention and proposing the measurement items which has obtained the justice, credibility and validity etc. Second, this study has proposed the study result that the strategic value perception factor affects positively the big data introduction intention and it has meaning in that the importance of the strategic value perception has been presented. Third, the study has proposed that the corporation which introduces big data should consider the big data introduction through precise analysis about industry's internal environment. Fourth, this study has proposed the point that the size and type of business of the corresponding corporation should be considered in introducing the big data by presenting the difference of the effect factors of big data introduction depending on the size and type of business of the corporation. The political implications are as follows. First, variety of utilization of big data is needed. The strategic value that big data has can be accessed in various ways in the product, service field, productivity field, decision making field etc and can be utilized in all the business fields based on that, but the parts that main domestic corporations are considering are limited to some parts of the products and service fields. Accordingly, in introducing big data, reviewing the phase about utilization in detail and design the big data system in a form which can maximize the utilization rate will be necessary. Second, the study is proposing the burden of the cost of the system introduction, difficulty in utilization in the system and lack of credibility in the supply corporations etc in the big data introduction phase by corporations. Since the world IT corporations are predominating the big data market, the big data introduction of domestic corporations can not but to be dependent on the foreign corporations. When considering that fact, that our country does not have global IT corporations even though it is world powerful IT country, the big data can be thought to be the chance to rear world level corporations. Accordingly, the government shall need to rear star corporations through active political support. Third, the corporations' internal and external professional manpower for the big data introduction and operation lacks. Big data is a system where how valuable data can be deducted utilizing data is more important than the system construction itself. For this, talent who are equipped with academic knowledge and experience in various fields like IT, statistics, strategy and management etc and manpower training should be implemented through systematic education for these talents. This study has arranged theoretical base for empirical studies about big data related fields by comprehending the main variables which affect the big data introduction intention and verifying them and is expected to be able to propose useful guidelines for the corporations and policy developers who are considering big data implementationby analyzing empirically that theoretical base.