• Title/Summary/Keyword: Edges

Search Result 2,652, Processing Time 0.03 seconds

Study on The Stiffness Locking Phenomenon and Eigen Problem in Mindlin Plate (Mindlin 판의 강성 과잉 현상과 고유치에 관한 연구)

  • 김용우;박춘수;민옥기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.445-454
    • /
    • 1991
  • In this thesis, Mindlin plate element with nine nodes and three degrees-of-freedom at each node is formulated and is employed in eigen-analysis of a rectangular plates in order to alleviate locking phenomenon of eigenvalues. Eigenvalues and their modes may be locked if conventional $C_{0}$-isoparametric element is used. In order to reduce stiffness locking phenomenon, two methods (1, the general reduced and selective integration, 2, the new element that use of modified shape function) are studied. Additionally in order to reduce the error due to mass matrix, two mass matrixes (1, Gauss-Legendre mass matrix, 2, Gauss-Lobatto mass matrix) are considered. The results of eigen-analysis for two models (the square plate with all edges simply-supported and all edges built-in), computed by two methods for stiffness matrix and by two mass matrixes are compared with theoretical solutions and conventional numerical solutions. These comparisons show that the performance of the two methods with Gauss-Lobatto mass matrix is better than that of the conventional plate element. But, by considering the spurious rigid body motions, the element which employs modified shape function with full integration and Gauss-Lobatto mass matrix can elevate the accuracy and convergence of numerical solutions.

Epicuticular Waxes and Stomata of Adult Scale Leaves of the Chinese Juniper Juniperus chinensis

  • Kim, Ki-Woo
    • Applied Microscopy
    • /
    • v.42 no.3
    • /
    • pp.124-128
    • /
    • 2012
  • Leaf surface structures were investigated in the Chinese juniper Juniperus chinensis by scanning electron microscopy. Adult scale leaves were collected from the tree, air-dried at room temperature, and sputter-coated with gold without further specimen preparation. Approximately fi ve stomata were locally distributed and arranged in clusters on the leaf surface. Stomata were ovoid and ca. 40 ${\mu}m$ long. The epicuticular wax structures of J. chinensis leaves were tubules and platelets. Numerous tubules were evident on the leaf regions where stomata were found. The tubules were cylindrical, straight, and ca. 1 ${\mu}m$ in length. They almost clothed the stomatal guard cells, and occluded the slit-shaped stomatal apertures. Moreover, the wax ridges were flat crystalloids that were connected to the surface by their narrow side. They did not have distinct edges, and their width/height ratio varied. In particular, the wax ridges could be discerned on the leaf regions where stomata were not present nearby. Since the wax ridges did not have distinct edges on their margin, they were identified as platelets. Instances were noted where platelets were oriented either parallel to each other or perpendicular to the cuticle surface. These results can be used in biomimetics to design the hierarchical structures for mimicking the plant innate properties such as hydrophobicity and self-cleaning effects of the leaf surface.

Efficient Image Deblurring using Edge Prediction (에지 예측을 기반으로 한 효율적인 영상 디블러링 -선명한 에지 예측을 기반으로 한 장의 영상으로부터의 모션 블러 제거-)

  • Cho, Sung-Hyun;Lee, Seung-Yong
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.27-33
    • /
    • 2009
  • We propose an efficient method for single image motion deblurring using edge prediction. Previous methods for motion deblurring from a single image have been based on total variation or natural image statistics. In contrast, our method predicts sharp edges by applying bilateral and shock filters and manipulating image gradients directly, and estimates motion blur using the predicted sharp edges. Sharp edge prediction makes our method possible to deblur efficiently with less computation. Results show that our method can effectively and efficiently restore images degraded by large complex motion blur.

  • PDF

Efficient Mapping Scheme for Parallel Processing (병렬처리를 위한 효율적인 사상 기법)

  • Kim, Seok-Su;Jeon, Mun-Seok
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.4
    • /
    • pp.766-780
    • /
    • 1996
  • This paper presents a mapping scheme for parallel processing using an accurate characterization of the communication overhead. A set of objective functions is formulated to evaluate the optimality of mapping a problem graph into a system graph. One of them is especially suitable for real-time applications of parallel processing. These objective functions are different from the conventional objective functions in that the edges in the problem graph are weighted and the actual distance rather than the nominal distance for the edges in the system graph is employed. This facilitates a more accurate qualification of the communication overhead. An efficient mapping scheme has been developed for the objective functions, where two levels of assignment optimization procedures are employed: initial assignment and pairwise exchange. The mapping scheme has been tested using the hypercube as a system graph.

  • PDF

Out-of-plane Structural Intensity Analysis of Rectangular Thick Plate (직사각형 후판의 면외 진동인텐시티 해석)

  • Kim, Kook-Hyun;Cho, Dae-Seung
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.42-49
    • /
    • 2012
  • A numerical method is presented for an out-of-plane structural intensity analysis of rectangular thick plates with arbitrary elastic edge constraints. The method adapts an assumed mode method based on Timoshenko beam functions to obtain the velocities and internal forces needed for a structural intensity analysis. To verify the presented method, the structural intensity of a square thick plate under harmonic force excitation, for which four edges are simply supported, is analyzed, and the result is compared with existing solutions using the assumed mode method based on trigonometric functions. In addition, numerical analyses are carried out for a rectangular-shaped thick plate under harmonic force excitations, of which three edges are simply supported and one edge utilizes an arbitrary elastic edge constraint. These numerical examples show the good accuracy and applicability of the presented method for rectangular thick plates with arbitrary edge constraints.

A Studyon Implementation of Edge Detection Algorithms Based on fuzzy Membership Models (퍼지모델을 기반으로한 에지검출 알고리즘 구현에관한 연구)

  • Lee, Bae-Ho;Kim, So-Yeon;Kim, Kwang-Hee
    • The Transactions of the Korea Information Processing Society
    • /
    • v.5 no.9
    • /
    • pp.2447-2456
    • /
    • 1998
  • Edge detection in the presence of noise is a well-known problem. this pper atempts to implement edge detection algorithms using fuzzy reasoning of fuzzy membership models. It examines an application-motived approach for solving the problem. Our approach is divided into three stages; fitering, segmentation and tracing. Filtering removes the noise from the original image and segmentation determines the edges and deects them. Finally, tracing assembles the edges into the related structure. Proposed method can be used effectively on these procedures by using fuzzy reasoning based on fuzzy models. In is compared with the previous edge detectio algorithms with fvorable results. Simulation results of the research are presented and discussed.

  • PDF

A Robust Face Detection Method Based on Skin Color and Edges

  • Ghimire, Deepak;Lee, Joonwhoan
    • Journal of Information Processing Systems
    • /
    • v.9 no.1
    • /
    • pp.141-156
    • /
    • 2013
  • In this paper we propose a method to detect human faces in color images. Many existing systems use a window-based classifier that scans the entire image for the presence of the human face and such systems suffers from scale variation, pose variation, illumination changes, etc. Here, we propose a lighting insensitive face detection method based upon the edge and skin tone information of the input color image. First, image enhancement is performed, especially if the image is acquired from an unconstrained illumination condition. Next, skin segmentation in YCbCr and RGB space is conducted. The result of skin segmentation is refined using the skin tone percentage index method. The edges of the input image are combined with the skin tone image to separate all non-face regions from candidate faces. Candidate verification using primitive shape features of the face is applied to decide which of the candidate regions corresponds to a face. The advantage of the proposed method is that it can detect faces that are of different sizes, in different poses, and that are making different expressions under unconstrained illumination conditions.

Eigenvalue Analysis of Arbitrarily Shaped, Concave Membranes With a Deep Groove Using a Sub-domain Method (영역 분할법을 이용한 깊은 홈을 가진 임의 형상 오목 멤브레인의 고유치 해석)

  • Kang, S.W.;Yoon, J.I.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.10
    • /
    • pp.1069-1074
    • /
    • 2009
  • A sub-domain method for free vibration analysis of arbitrarily shaped, concave membranes with a deep groove is proposed in the paper. The proposed method divides the concave membrane of interest into two convex regions. The vibration displacement(approximate solution) of each convex region is assumed by linearly superposing plane waves generated at edges of the region. A sub-system matrix for each convex region is extracted by applying a provisional boundary condition to the approximate solution. Finally, a system matrix, which of the determinant gives eigenvalues of the concave membrane, is made by considering the fixed boundary condition(displacement zero condition) at edges and the compatibility condition(the condition of continuity in displacement and slope) at the interface between the two regions. Case studies show that the proposed method is valid and accurate when the eigenvalues by the proposed are compared to those by NDIF method, FEM, or the exact method.

Transient Improvement Algorithm in Digital Images

  • Kwon, Ji-Yong;Chang, Joon-Young;Lee, Min-Seok;Kang, Moon-Gi
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2010.07a
    • /
    • pp.74-76
    • /
    • 2010
  • Digital images or videos are used in modern digital devices. The resolution of HDTV in digital broadcasting system is higher than that of previous analog systems. Also, mobile phone with 3G can provide images as well as video streaming services in realtime. In these circumstances, the visual quality of images has become an important factor. We can make image clear by transient improvement process that reduces transient in edges. In this paper, we present an transient improvement algorithm. The proposed algorithm improves edges by making smooth edge to steep edge. Before performing transient improvement algorithm, edge detection algorithm should be operated. Laplacian operator is used in edge detection, and the absolute value of it is used to calculate gain value. Then, local maximum and minimum values are computed to discriminate current pixel value to raise up or pull down. Compensating value that gain value multiplies with the difference between maximum (or minimum) value and current pixel value adds (or subtracts) to current pixel value. That is, improved signal is generated by making the narrow transient of edge. The advantage of proposed algorithm is that it doesn't produce shooting problem like overshoot or undershoot.

  • PDF

Penalized-Likelihood Image Reconstruction for Transmission Tomography Using Spline Regularizers (스플라인 정칙자를 사용한 투과 단층촬영을 위한 벌점우도 영상재구성)

  • Jung, J.E.;Lee, S.-J.
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.211-220
    • /
    • 2015
  • Recently, model-based iterative reconstruction (MBIR) has played an important role in transmission tomography by significantly improving the quality of reconstructed images for low-dose scans. MBIR is based on the penalized-likelihood (PL) approach, where the penalty term (also known as the regularizer) stabilizes the unstable likelihood term, thereby suppressing the noise. In this work we further improve MBIR by using a more expressive regularizer which can restore the underlying image more accurately. Here we used a spline regularizer derived from a linear combination of the two-dimensional splines with first- and second-order spatial derivatives and applied it to a non-quadratic convex penalty function. To derive a PL algorithm with the spline regularizer, we used a separable paraboloidal surrogates algorithm for convex optimization. The experimental results demonstrate that our regularization method improves reconstruction accuracy in terms of both regional percentage error and contrast recovery coefficient by restoring smooth edges as well as sharp edges more accurately.