• 제목/요약/키워드: Edge-based segmentation

검색결과 229건 처리시간 0.026초

비디오 시퀸스에서 움직임 객체 분할과 VOP 추출을 위한 강력한 알고리즘 (A Robust Algorithm for Moving Object Segmentation and VOP Extraction in Video Sequences)

  • 김준기;이호석
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제8권4호
    • /
    • pp.430-441
    • /
    • 2002
  • 비디오 객체 분할은 MPEG-4와 같은 객체기반 비디오 코딩을 위한 중요한 구성 요소이다. 본논문은 비디오 시퀸스에서 움직임 객체 분할을 위한 새로운 알고리즘과 VOP(Video Object Plane)추출 방법을 소개한다. 본 논문의 핵심은 시간적으로 변하는 움직임 객체 에지와 공간적 객체 에지 검출 결과를 효율적으로 조합하여 정확한 객체 경계를 추출하는 것이다. 이후 추출된 에지를 통하여 VOP를 생성한다. 본 알고리즘은 첫 번째 프레임을 기준영상으로 설정한 후 두 개의 연속된 프레임 사이의 움직임 픽셀 차이 값으로부터 시작된다. 차이영상을 추출한 후 차이영상에 Canny 에지 연산과 수리형태 녹임 연산(erosion)을 적용하고, 다음 프레임의 영상에 Canny 에지 연산과 수리형태 녹임 연산을 적용하여 두 프레임 사이의 에지 비교를 통하여 정확한 움직임 객체 경계를 추출한다. 이 과정에서 수리형태학 녹임 연산은 잘못된 객체 에지의 검출을 방지하는 작용을 한다. 두 영상 사이의 정확한 움직임 객체 에지(moving object edge)는 에지 크기를 조절하여 생성한다. 본 알고리즘은 픽셀 범위까지 고려한 정화한 객체의 경계를 얻음으로서 매우 쉬운 구현과 빠른 객체 추출을 보였다.

Research on Water Edge Extraction in Islands from GF-2 Remote Sensing Image Based on GA Method

  • Bian, Yan;Gong, Yusheng;Ma, Guopeng;Duan, Ting
    • Journal of Information Processing Systems
    • /
    • 제17권5호
    • /
    • pp.947-959
    • /
    • 2021
  • Aiming at the problem of low accuracy in the water boundary automatic extraction of islands from GF-2 remote sensing image with high resolution in three bands, new water edges automatic extraction method in island based on GF-2 remote sensing images, genetic algorithm (GA) method, is proposed in this paper. Firstly, the GA-OTSU threshold segmentation algorithm based on the combination of GA and the maximal inter-class variance method (OTSU) was used to segment the island in GF-2 remote sensing image after pre-processing. Then, the morphological closed operation was used to fill in the holes in the segmented binary image, and the boundary was extracted by the Sobel edge detection operator to obtain the water edge. The experimental results showed that the proposed method was better than the contrast methods in both the segmentation performance and the accuracy of water boundary extraction in island from GF-2 remote sensing images.

유전자 알고리즘을 이용한 반자동 영상분할 시스템 개발 (Semi-automation Image segmentation system development of using genetic algorithm)

  • 임혁순;박상성;장동식
    • 한국컴퓨터정보학회논문지
    • /
    • 제11권4호
    • /
    • pp.283-289
    • /
    • 2006
  • 현재 영상분할은 사용자가 원하는 영상을 분할하고, 분할된 객체에 다른 영상을 합성하는 기술에 대해 많은 연구가 진행되어왔다. 본 논문에서는 점진적 영역병합과 유전자 알고리즘을 이용하여 새로운 반자동 영상 분할방법을 제안하였다. 제안된 알고리즘은 사용자가 원하는 객체를 선정한 후, 유전자 알고리즘을 이용해 객체의 경계를 검색한다. 검색된 경계를 기반으로 분수령 알고리즘을 이용하여 사용자가 원하는 객체의 영역을 분할하였다. 분할된 객체에서 불명확한 영역들을 점진적 영역 병합으로 배경과 객체를 분리하였다. 그리고, 알고리즘 개발을 효과적으로 수행하기 위해 GUI기반의 인터페이스를 만들어 사용자가 원하는 값을 적용할 수 있게 하였다. 실험에서는 제한된 방법의 우수성 입증을 위하여 다양한 영상을 분석하였다.

  • PDF

Background Subtraction for Moving Cameras based on trajectory-controlled segmentation and Label Inference

  • Yin, Xiaoqing;Wang, Bin;Li, Weili;Liu, Yu;Zhang, Maojun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권10호
    • /
    • pp.4092-4107
    • /
    • 2015
  • We propose a background subtraction method for moving cameras based on trajectory classification, image segmentation and label inference. In the trajectory classification process, PCA-based outlier detection strategy is used to remove the outliers in the foreground trajectories. Combining optical flow trajectory with watershed algorithm, we propose a trajectory-controlled watershed segmentation algorithm which effectively improves the edge-preserving performance and prevents the over-smooth problem. Finally, label inference based on Markov Random field is conducted for labeling the unlabeled pixels. Experimental results on the motionseg database demonstrate the promising performance of the proposed approach compared with other competing methods.

조명조건이 다른 다수영상의 융합을 통한 영상의 분할기법 (Image segmentation by fusing multiple images obtained under different illumination conditions)

  • 전윤산;한헌수
    • 제어로봇시스템학회논문지
    • /
    • 제1권2호
    • /
    • pp.105-111
    • /
    • 1995
  • This paper proposes a segmentation algorithm using gray-level discontinuity and surface reflectance ratio of input images obtained under different illumination conditions. Each image is divided by a certain number of subregions based on the thresholds. The thresholds are determined using the histogram of fusion image which is obtained by ANDing the multiple input images. The subregions of images are projected on the eigenspace where their bases are the major eigenvectors of image matrix. Points in the eigenspace are classified into two clusters. Images associated with the bigger cluster are fused by revised ANDing to form a combined edge image. Missing edges are detected using surface reflectance ration and chain code. The proposed algorithm obtains more accurate edge information and allows to more efficiently recognize the environment under various illumination conditions.

  • PDF

Segmentation of Scalp and Skull in brain MR Images Using CannyEdge Level Set Method

  • Du, Ruoyu;Lee, Hyo Jong
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2010년도 추계학술발표대회
    • /
    • pp.668-671
    • /
    • 2010
  • In this paper, we present a novel automatic algorithm for scalp and skull segmentation in T1-weighted head MR images. First, the scalp and skull part are constructed by using intensity threshold. Second, the scalp outer surface is extracted based on an active level set method. Third, the skull inner surface is extracted using a canny edge detection algorithm. Finally, the fast sweeping, tagging and level set methods are applied to reconstruct surfaces from the detected points in three-dimensional space. The results of the new segmentation algorithm on MRI data acquired from eight persons were compared with manual segmented data. The average similarity indices for the scalp and skull segmented regions were equal to 84.42% for the test data.

A Parallel Algorithm for Image Segmentation on Mesh-connected MIMD System

  • Jeon, Byeong-Moon;Jeong, Chang-Sung
    • 한국산업정보학회논문지
    • /
    • 제3권1호
    • /
    • pp.258-268
    • /
    • 1998
  • This paper presents two sequential advanced split and merge algorithms and a parallel image segmentation algorithm based on them. First, the two advanced methods are obtained from the combination of edge detection and classic split and merge to solve the inherent problems of the classical method. Besides, the parallel image segmentation algorithm on mesh-connected MIMD system considers three types in the merge stage to reduce the communication overhead between processors, such as intraprocessor merge, interprocessor with boundary merge, and interprocessor without boundary merge. Finally , we prove that the proposed algorithms achieve the improved performance by implementing them.

Improved Minimum Spanning Tree based Image Segmentation with Guided Matting

  • Wang, Weixing;Tu, Angyan;Bergholm, Fredrik
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권1호
    • /
    • pp.211-230
    • /
    • 2022
  • In image segmentation, for the condition that objects (targets) and background in an image are intertwined or their common boundaries are vague as well as their textures are similar, and the targets in images are greatly variable, the deep learning might be difficult to use. Hence, a new method based on graph theory and guided feathering is proposed. First, it uses a guided feathering algorithm to initially separate the objects from background roughly, then, the image is separated into two different images: foreground image and background image, subsequently, the two images are segmented accurately by using the improved graph-based algorithm respectively, and finally, the two segmented images are merged together as the final segmentation result. For the graph-based new algorithm, it is improved based on MST in three main aspects: (1) the differences between the functions of intra-regional and inter-regional; (2) the function of edge weight; and (3) re-merge mechanism after segmentation in graph mapping. Compared to the traditional algorithms such as region merging, ordinary MST and thresholding, the studied algorithm has the better segmentation accuracy and effect, therefore it has the significant superiority.

EBT 의료 영상에서 폐 영역 추출 및 폐엽 분할 (Segmentation of Lung and Lung Lobes in EBT Medical Images)

  • 김영희;이성기
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권3호
    • /
    • pp.276-292
    • /
    • 2004
  • 본 논문에서는 폐 질환 진단에 필요한 EBT(Electron Beam Tomography) 흉부 영상에서 폐 영역을 추출하고, 추출된 폐 영역에서 폐엽의 경계(pulmonary fissure)를 찾아 폐엽(lobe) 단위로 분할하는 방법을 제안하였다. EBT 흉부 영상을 분석하여 히스토그램을 기반으로 하는 임계치 방법과, 수학적형태학을 적용하여 폐 영역을 추출하였고 본 논문에서 제안한 adaptive filter scale을 사용한 에지 연산자와 폐엽 경계(pulmonary fissure)에 대한 해부학적 지식을 바탕으로 폐 영역을 폐엽 단위로 분할하였다. 본 논문에서 제안한 방법을 총 102개의 영상에 대해 실험한 결과는 폐 영역 추출에서 95% 이상의 정확도를 보여주었고 폐엽 경계선 추출에서 5 픽셀 이하의 거리오차를 나타내었다.

퍼지모델을 기반으로한 에지검출 알고리즘 구현에관한 연구 (A Studyon Implementation of Edge Detection Algorithms Based on fuzzy Membership Models)

  • 이배호;김소연;김광희
    • 한국정보처리학회논문지
    • /
    • 제5권9호
    • /
    • pp.2447-2456
    • /
    • 1998
  • 잡음을 지닌 영상에서 에지검출은 널리 알려진 문제이다. 본 논문에서는 그러한 문제를 풀기 위해 퍼지 멤버쉽 함수를 통한 퍼지추론을 이용하여 에지검출 알고리즘을 구현하였고 응용의 관점에서 방법을 고찰하였다. 구현된 에지검출 알고리즘은 필터링 과정, 단편 에지검출 과정, 추적 과정으로 나뉜다. 필터링은 윈 영상으로부터 잡음을 제거하는 과정이고, 단편 에지검출은 단편적인 에지를 결정하고 검출하는 과정이다. 마지막으로 에지추적 및 결합은 에지를 구조적인 것으로 결합한다. 이러한 각 단계에 퍼지 모델에 기반한 퍼지추론이 효율적으로 적용되었다. 이를 기존의 에지검출 알고리즘과 비교ㆍ검토하였다. 실험결과들은 본 논문에서 제안한 퍼지추론을 이용한 에지검출 알고리즘이 기존의 알고리즘에 비해, 검출 성능이 향상되었음을 입증하고 있다.

  • PDF