• 제목/요약/키워드: Edge-Cloud Systems

검색결과 77건 처리시간 0.025초

Communication Resource Allocation Strategy of Internet of Vehicles Based on MEC

  • Ma, Zhiqiang
    • Journal of Information Processing Systems
    • /
    • 제18권3호
    • /
    • pp.389-401
    • /
    • 2022
  • The business of Internet of Vehicles (IoV) is growing rapidly, and the large amount of data exchange has caused problems of large mobile network communication delay and large energy loss. A strategy for resource allocation of IoV communication based on mobile edge computing (MEC) is thus proposed. First, a model of the cloud-side collaborative cache and resource allocation system for the IoV is designed. Vehicles can offload tasks to MEC servers or neighboring vehicles for communication. Then, the communication model and the calculation model of IoV system are comprehensively analyzed. The optimization objective of minimizing delay and energy consumption is constructed. Finally, the on-board computing task is coded, and the optimization problem is transformed into a knapsack problem. The optimal resource allocation strategy is obtained through genetic algorithm. The simulation results based on the MATLAB platform show that: The proposed strategy offloads tasks to the MEC server or neighboring vehicles, making full use of system resources. In different situations, the energy consumption does not exceed 300 J and 180 J, with an average delay of 210 ms, effectively reducing system overhead and improving response speed.

엣지 시스템을 위한 LSTM 기반 화재 및 악취 예측 모델 (LSTM-based Fire and Odor Prediction Model for Edge System)

  • 윤주상;이태진
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제11권2호
    • /
    • pp.67-72
    • /
    • 2022
  • 최근 인공지능을 활용한 다양한 지능형 응용서비스 개발이 활발히 진행 중이다. 특히, 제조 산업 현장에서는 인공지능 기반 실시간 예측서비스 연구가 활발히 진행 중이며 이중 화재 및 악취를 감지·예측할 수 있는 인공지능 서비스에 대한 요구가 매우 높다. 하지만 기존 감지·예측시스템은 화재 및 악취 발생 예측이 아닌 발생 후 감지 서비스가 대부분이다. 이는 인공지능 기반 예측서비스 기술이 적용되어 있지 않기 때문이다. 또한, 화재 예측 및 악취 감지·예측서비스는 초저지연 특징을 가진 서비스이다. 따라서 초저지연 예측서비스를 제공하기 위해 엣지 컴퓨팅 기술이 인공지능 모델과 결합되어 클라우드에 비해 빠른 추론 결과를 현장에 빠르게 적용할 수 있도록 개발 중이다. 따라서 본 논문에서는 제조 산업 현장에서 가장 많이 요구되는 화재 예측 및 악취 감지·예측에 사용할 수 있는 LSTM 알고리즘 기반 학습모델을 제안한다. 또한, 제안하는 학습모델은 엣지 다바이스에 구현이 가능하도록 설계하였으며 사물인터넷 단말로부터 실시간 센서데이터를 수신하고 이 데이터를 추론 모델에 적용하여 화재 및 악취 상태를 실시간으로 예측할 수 있도록 제안한다. 제안된 모델은 3가지 성능 지표를 통해 학습모델의 예측 정확도를 평가하였으며 평가 결과는 평균 90% 이상 성능을 보였다.

이종 셀룰러 네트워크 환경에서 사용자 이동성을 고려한 엣지 캐싱 기법 (Edge Caching Strategy with User Mobility in Heterogeneous Cellular Network Environments)

  • 최윤정;임유진
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제11권2호
    • /
    • pp.43-50
    • /
    • 2022
  • 모바일 데이터의 사용이 늘어나면서 특히 비디오 콘텐츠가 차지하는 비중이 가파르게 증가하고 있다. 모바일 사용자가 지리적으로 원거리에 위치한 클라우드 서버를 통해 데이터를 전달받으면서 발생하는 문제들을 해결하기 위해 사용자와 지리적으로 가까운 엣지 서버에 미리 데이터를 캐싱하는 방법이 많은 주목을 받고 있다. 본 논문에서는 셀룰러 네트워크 환경에서 지연 오프로딩 스킴(delayed offloading scheme)을 적용해 모바일 사용자에게 효과적으로 콘텐츠 파일을 제공하기 위한 SBS 캐싱 기법을 제안하였다. 지연 오프로딩 스킴에서 Macro Base Station(MBS)보다 Small Cell Base Station(SBS)으로부터 데이터를 다운받는 경우 더 적은 비용을 요구하기 때문에 MBS로부터 전송받는 데이터 크기를 최소화하는 것을 목표로 하였다. 모바일 사용자의 이동 경로 확률과 콘텐츠 파일의 인기도를 사용해 SBS에 캐싱할 콘텐츠 파일과 그 크기를 결정하고 SBS의 서비스 범위가 중복되는 것을 고려해 콘텐츠 파일을 재배치하는 캐싱 기법을 제안하였다. 또한 실험을 통해 다른 알고리즘보다 MBS로부터 다운받는 데이터 크기를 줄일 수 있다는 것을 증명하였다.

Wireless Networked Control System에서 Actuator 기반 Direct Actuation Update 방법 (Direct Actuation Update Scheme based on Actuator in Wireless Networked Control System)

  • 경연웅;김태국;김영준
    • 사물인터넷융복합논문지
    • /
    • 제9권1호
    • /
    • pp.125-129
    • /
    • 2023
  • 최근 Internet of Things (IoT) 기반 Wireless Networked Control System (WNCS)에서 Sensor의 Status Update 및 Actuator로의 Actuation Update 분석을 위해 정보의 신선도를 측정하는 지표인 Age of Information (AoI)가 고려되고 있다. 또한 WNCS에 Edge Computing (EC)이 도입되면서 기존의 Cloud Computing 기반 아키텍처보다 낮은 AoI를 보장할 수 있다. 하지만 Controller가 관리하는 Sensor의 수가 증가하면서 Controller에 부하가 증가하여 AoI 요구사항을 만족시키지 못하는 문제점이 발생하게 되었다. 본 연구에서는 이러한 문제를 해결하기 위해 Actuator의 컴퓨팅 능력을 활용하여 Sensor의 Status Update를 해당 지역의 Actuator가 가용할 때 직접적으로 전송하여 Actuator가 직접 Actuation Update를 수행함으로써 AoI 요구사항을 만족시키고자 한다. 이를 위해 본 연구에서는 AoI 분석을 위한 분석 모델을 제시하였고 시뮬레이션을 통해 제안하는 방법이 기존 방법 대비 AoI를 줄일 수 있음을 보였다.

머신러닝 기반 메모리 성능 개선 연구 (Study on Memory Performance Improvement based on Machine Learning)

  • 조두산
    • 문화기술의 융합
    • /
    • 제7권1호
    • /
    • pp.615-619
    • /
    • 2021
  • 이 연구는 사물인터넷, 클라우드 컴퓨팅 그리고 에지 컴퓨팅 등 많은 임베디드 시스템에서 성능 및 에너지 효율을 높이고자 최적화하는 메모리 시스템에 초점을 맞추어 그 성능 개선 기법을 제안한다. 제안하는 기법은 최근 많이 이용되고 있는 머신 러닝 알고리즘을 기반으로 메모리 시스템 성능을 도모한다. 머신 러닝 기법은 학습을 통하여 다양한 응용에 사용될 수 있는데, 메모리 시스템 성능 개선에서 사용되는 데이터의 분류 태스크에 적용될 수 있다. 정확도 높은 머신 러닝 기법 기반 데이터 분류는 데이터의 사용 패턴에 따라 데이터를 적절하게 배치할 수 있게 하여 전체 시스템 성능 개선을 도모할 수 있게 한다.

Long-term shape sensing of bridge girders using automated ROI extraction of LiDAR point clouds

  • Ganesh Kolappan Geetha;Sahyeon Lee;Junhwa Lee;Sung-Han Sim
    • Smart Structures and Systems
    • /
    • 제33권6호
    • /
    • pp.399-414
    • /
    • 2024
  • This study discusses the long-term deformation monitoring and shape sensing of bridge girder surfaces with an automated extraction scheme for point clouds in the Region Of Interest (ROI), invariant to the position of a Light Detection And Ranging system (LiDAR). Advanced smart construction necessitates continuous monitoring of the deformation and shape of bridge girders during the construction phase. An automated scheme is proposed for reconstructing geometric model of ROI in the presence of noisy non-stationary background. The proposed scheme involves (i) denoising irrelevant background point clouds using dimensions from the design model, (ii) extracting the outer boundaries of the bridge girder by transforming and processing the point cloud data in a two-dimensional image space, (iii) extracting topology of pre-defined targets using the modified Otsu method, (iv) registering the point clouds to a common reference frame or design coordinate using extracted predefined targets placed outside ROI, and (v) defining the bounding box in the point clouds using corresponding dimensional information of the bridge girder and abutments from the design model. The surface-fitted reconstructed geometric model in the ROI is superposed consistently over a long period to monitor bridge shape and derive deflection during the construction phase, which is highly correlated. The proposed scheme of combining 2D-3D with the design model overcomes the sensitivity of 3D point cloud registration to initial match, which often leads to a local extremum.

A Comprehensive Review of Emerging Computational Methods for Gene Identification

  • Yu, Ning;Yu, Zeng;Li, Bing;Gu, Feng;Pan, Yi
    • Journal of Information Processing Systems
    • /
    • 제12권1호
    • /
    • pp.1-34
    • /
    • 2016
  • Gene identification is at the center of genomic studies. Although the first phase of the Encyclopedia of DNA Elements (ENCODE) project has been claimed to be complete, the annotation of the functional elements is far from being so. Computational methods in gene identification continue to play important roles in this area and other relevant issues. So far, a lot of work has been performed on this area, and a plethora of computational methods and avenues have been developed. Many review papers have summarized these methods and other related work. However, most of them focus on the methodologies from a particular aspect or perspective. Different from these existing bodies of research, this paper aims to comprehensively summarize the mainstream computational methods in gene identification and tries to provide a short but concise technical reference for future studies. Moreover, this review sheds light on the emerging trends and cutting-edge techniques that are believed to be capable of leading the research on this field in the future.

Intelligent Massive Traffic Handling Scheme in 5G Bottleneck Backhaul Networks

  • Tam, Prohim;Math, Sa;Kim, Seokhoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권3호
    • /
    • pp.874-890
    • /
    • 2021
  • With the widespread deployment of the fifth-generation (5G) communication networks, various real-time applications are rapidly increasing and generating massive traffic on backhaul network environments. In this scenario, network congestion will occur when the communication and computation resources exceed the maximum available capacity, which severely degrades the network performance. To alleviate this problem, this paper proposed an intelligent resource allocation (IRA) to integrate with the extant resource adjustment (ERA) approach mainly based on the convergence of support vector machine (SVM) algorithm, software-defined networking (SDN), and mobile edge computing (MEC) paradigms. The proposed scheme acquires predictable schedules to adapt the downlink (DL) transmission towards off-peak hour intervals as a predominant priority. Accordingly, the peak hour bandwidth resources for serving real-time uplink (UL) transmission enlarge its capacity for a variety of mission-critical applications. Furthermore, to advance and boost gateway computation resources, MEC servers are implemented and integrated with the proposed scheme in this study. In the conclusive simulation results, the performance evaluation analyzes and compares the proposed scheme with the conventional approach over a variety of QoS metrics including network delay, jitter, packet drop ratio, packet delivery ratio, and throughput.

Computer Vision-based Continuous Large-scale Site Monitoring System through Edge Computing and Small-Object Detection

  • Kim, Yeonjoo;Kim, Siyeon;Hwang, Sungjoo;Hong, Seok Hwan
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.1243-1244
    • /
    • 2022
  • In recent years, the growing interest in off-site construction has led to factories scaling up their manufacturing and production processes in the construction sector. Consequently, continuous large-scale site monitoring in low-variability environments, such as prefabricated components production plants (precast concrete production), has gained increasing importance. Although many studies on computer vision-based site monitoring have been conducted, challenges for deploying this technology for large-scale field applications still remain. One of the issues is collecting and transmitting vast amounts of video data. Continuous site monitoring systems are based on real-time video data collection and analysis, which requires excessive computational resources and network traffic. In addition, it is difficult to integrate various object information with different sizes and scales into a single scene. Various sizes and types of objects (e.g., workers, heavy equipment, and materials) exist in a plant production environment, and these objects should be detected simultaneously for effective site monitoring. However, with the existing object detection algorithms, it is difficult to simultaneously detect objects with significant differences in size because collecting and training massive amounts of object image data with various scales is necessary. This study thus developed a large-scale site monitoring system using edge computing and a small-object detection system to solve these problems. Edge computing is a distributed information technology architecture wherein the image or video data is processed near the originating source, not on a centralized server or cloud. By inferring information from the AI computing module equipped with CCTVs and communicating only the processed information with the server, it is possible to reduce excessive network traffic. Small-object detection is an innovative method to detect different-sized objects by cropping the raw image and setting the appropriate number of rows and columns for image splitting based on the target object size. This enables the detection of small objects from cropped and magnified images. The detected small objects can then be expressed in the original image. In the inference process, this study used the YOLO-v5 algorithm, known for its fast processing speed and widely used for real-time object detection. This method could effectively detect large and even small objects that were difficult to detect with the existing object detection algorithms. When the large-scale site monitoring system was tested, it performed well in detecting small objects, such as workers in a large-scale view of construction sites, which were inaccurately detected by the existing algorithms. Our next goal is to incorporate various safety monitoring and risk analysis algorithms into this system, such as collision risk estimation, based on the time-to-collision concept, enabling the optimization of safety routes by accumulating workers' paths and inferring the risky areas based on workers' trajectory patterns. Through such developments, this continuous large-scale site monitoring system can guide a construction plant's safety management system more effectively.

  • PDF

링크드오픈데이터 기반 스마트 라이브러리의 참조모델에 관한 연구 (A study of Reference Model of Smart Library based on Linked Open Data)

  • 문희경;한성국
    • 한국정보통신학회논문지
    • /
    • 제20권9호
    • /
    • pp.1666-1672
    • /
    • 2016
  • 최근 스마트 기술이 다양한 정보시스템 분야에 적용되고 있다. 특히, 기존 도서관 서비스 분야는 디지털도서관을 넘어 스마트 도서관으로 변화되었다. 이러한 변화의 환경에서 다양한 콘텐츠와 서비스 그리고 사용자와 스마트 디바이스를 지원하는 도서관 서비스 소프트웨어 플랫폼이 요구된다. 기존 도서관 서비스는 서로 다른 이기종의 도서관 시스템간의 의미적 상호운용성이 저해되는 제한점을 갖고 있다. 본 논문은 다양한 콘텐츠 제공과 시스템간의 상호작용 그리고 서비스의 통합에 중점을 두어 미래 도서관 시스템의 원형으로 링크드오픈데이터 기반의 스마트 라이브러리 제안한다. 링크드 오픈데이터 기반 스마트 라이브러리는 첨단 정보기술이 모여진 혁신적인 시스템이다. 우리는 링크드오픈데이터를 기반으로 스마트 라이브러리를 위한 다양한 요구사항에 따라 시스템 환경을 설계하였다. 이용자의 요구사항과 정보기술의 에코시스템을 고려하여 스마트 라이브러리 시스템의 기능적 요구사항에 대해 기술한다. 또한 기능적 요구사항을 수용하고 다양한 스마트 디바이스를 통해 사용자에게 스마트 지식 서비스를 제공할 수 있는 참조 프레임워크를 보여준다.