The business of Internet of Vehicles (IoV) is growing rapidly, and the large amount of data exchange has caused problems of large mobile network communication delay and large energy loss. A strategy for resource allocation of IoV communication based on mobile edge computing (MEC) is thus proposed. First, a model of the cloud-side collaborative cache and resource allocation system for the IoV is designed. Vehicles can offload tasks to MEC servers or neighboring vehicles for communication. Then, the communication model and the calculation model of IoV system are comprehensively analyzed. The optimization objective of minimizing delay and energy consumption is constructed. Finally, the on-board computing task is coded, and the optimization problem is transformed into a knapsack problem. The optimal resource allocation strategy is obtained through genetic algorithm. The simulation results based on the MATLAB platform show that: The proposed strategy offloads tasks to the MEC server or neighboring vehicles, making full use of system resources. In different situations, the energy consumption does not exceed 300 J and 180 J, with an average delay of 210 ms, effectively reducing system overhead and improving response speed.
최근 인공지능을 활용한 다양한 지능형 응용서비스 개발이 활발히 진행 중이다. 특히, 제조 산업 현장에서는 인공지능 기반 실시간 예측서비스 연구가 활발히 진행 중이며 이중 화재 및 악취를 감지·예측할 수 있는 인공지능 서비스에 대한 요구가 매우 높다. 하지만 기존 감지·예측시스템은 화재 및 악취 발생 예측이 아닌 발생 후 감지 서비스가 대부분이다. 이는 인공지능 기반 예측서비스 기술이 적용되어 있지 않기 때문이다. 또한, 화재 예측 및 악취 감지·예측서비스는 초저지연 특징을 가진 서비스이다. 따라서 초저지연 예측서비스를 제공하기 위해 엣지 컴퓨팅 기술이 인공지능 모델과 결합되어 클라우드에 비해 빠른 추론 결과를 현장에 빠르게 적용할 수 있도록 개발 중이다. 따라서 본 논문에서는 제조 산업 현장에서 가장 많이 요구되는 화재 예측 및 악취 감지·예측에 사용할 수 있는 LSTM 알고리즘 기반 학습모델을 제안한다. 또한, 제안하는 학습모델은 엣지 다바이스에 구현이 가능하도록 설계하였으며 사물인터넷 단말로부터 실시간 센서데이터를 수신하고 이 데이터를 추론 모델에 적용하여 화재 및 악취 상태를 실시간으로 예측할 수 있도록 제안한다. 제안된 모델은 3가지 성능 지표를 통해 학습모델의 예측 정확도를 평가하였으며 평가 결과는 평균 90% 이상 성능을 보였다.
모바일 데이터의 사용이 늘어나면서 특히 비디오 콘텐츠가 차지하는 비중이 가파르게 증가하고 있다. 모바일 사용자가 지리적으로 원거리에 위치한 클라우드 서버를 통해 데이터를 전달받으면서 발생하는 문제들을 해결하기 위해 사용자와 지리적으로 가까운 엣지 서버에 미리 데이터를 캐싱하는 방법이 많은 주목을 받고 있다. 본 논문에서는 셀룰러 네트워크 환경에서 지연 오프로딩 스킴(delayed offloading scheme)을 적용해 모바일 사용자에게 효과적으로 콘텐츠 파일을 제공하기 위한 SBS 캐싱 기법을 제안하였다. 지연 오프로딩 스킴에서 Macro Base Station(MBS)보다 Small Cell Base Station(SBS)으로부터 데이터를 다운받는 경우 더 적은 비용을 요구하기 때문에 MBS로부터 전송받는 데이터 크기를 최소화하는 것을 목표로 하였다. 모바일 사용자의 이동 경로 확률과 콘텐츠 파일의 인기도를 사용해 SBS에 캐싱할 콘텐츠 파일과 그 크기를 결정하고 SBS의 서비스 범위가 중복되는 것을 고려해 콘텐츠 파일을 재배치하는 캐싱 기법을 제안하였다. 또한 실험을 통해 다른 알고리즘보다 MBS로부터 다운받는 데이터 크기를 줄일 수 있다는 것을 증명하였다.
최근 Internet of Things (IoT) 기반 Wireless Networked Control System (WNCS)에서 Sensor의 Status Update 및 Actuator로의 Actuation Update 분석을 위해 정보의 신선도를 측정하는 지표인 Age of Information (AoI)가 고려되고 있다. 또한 WNCS에 Edge Computing (EC)이 도입되면서 기존의 Cloud Computing 기반 아키텍처보다 낮은 AoI를 보장할 수 있다. 하지만 Controller가 관리하는 Sensor의 수가 증가하면서 Controller에 부하가 증가하여 AoI 요구사항을 만족시키지 못하는 문제점이 발생하게 되었다. 본 연구에서는 이러한 문제를 해결하기 위해 Actuator의 컴퓨팅 능력을 활용하여 Sensor의 Status Update를 해당 지역의 Actuator가 가용할 때 직접적으로 전송하여 Actuator가 직접 Actuation Update를 수행함으로써 AoI 요구사항을 만족시키고자 한다. 이를 위해 본 연구에서는 AoI 분석을 위한 분석 모델을 제시하였고 시뮬레이션을 통해 제안하는 방법이 기존 방법 대비 AoI를 줄일 수 있음을 보였다.
이 연구는 사물인터넷, 클라우드 컴퓨팅 그리고 에지 컴퓨팅 등 많은 임베디드 시스템에서 성능 및 에너지 효율을 높이고자 최적화하는 메모리 시스템에 초점을 맞추어 그 성능 개선 기법을 제안한다. 제안하는 기법은 최근 많이 이용되고 있는 머신 러닝 알고리즘을 기반으로 메모리 시스템 성능을 도모한다. 머신 러닝 기법은 학습을 통하여 다양한 응용에 사용될 수 있는데, 메모리 시스템 성능 개선에서 사용되는 데이터의 분류 태스크에 적용될 수 있다. 정확도 높은 머신 러닝 기법 기반 데이터 분류는 데이터의 사용 패턴에 따라 데이터를 적절하게 배치할 수 있게 하여 전체 시스템 성능 개선을 도모할 수 있게 한다.
This study discusses the long-term deformation monitoring and shape sensing of bridge girder surfaces with an automated extraction scheme for point clouds in the Region Of Interest (ROI), invariant to the position of a Light Detection And Ranging system (LiDAR). Advanced smart construction necessitates continuous monitoring of the deformation and shape of bridge girders during the construction phase. An automated scheme is proposed for reconstructing geometric model of ROI in the presence of noisy non-stationary background. The proposed scheme involves (i) denoising irrelevant background point clouds using dimensions from the design model, (ii) extracting the outer boundaries of the bridge girder by transforming and processing the point cloud data in a two-dimensional image space, (iii) extracting topology of pre-defined targets using the modified Otsu method, (iv) registering the point clouds to a common reference frame or design coordinate using extracted predefined targets placed outside ROI, and (v) defining the bounding box in the point clouds using corresponding dimensional information of the bridge girder and abutments from the design model. The surface-fitted reconstructed geometric model in the ROI is superposed consistently over a long period to monitor bridge shape and derive deflection during the construction phase, which is highly correlated. The proposed scheme of combining 2D-3D with the design model overcomes the sensitivity of 3D point cloud registration to initial match, which often leads to a local extremum.
Gene identification is at the center of genomic studies. Although the first phase of the Encyclopedia of DNA Elements (ENCODE) project has been claimed to be complete, the annotation of the functional elements is far from being so. Computational methods in gene identification continue to play important roles in this area and other relevant issues. So far, a lot of work has been performed on this area, and a plethora of computational methods and avenues have been developed. Many review papers have summarized these methods and other related work. However, most of them focus on the methodologies from a particular aspect or perspective. Different from these existing bodies of research, this paper aims to comprehensively summarize the mainstream computational methods in gene identification and tries to provide a short but concise technical reference for future studies. Moreover, this review sheds light on the emerging trends and cutting-edge techniques that are believed to be capable of leading the research on this field in the future.
KSII Transactions on Internet and Information Systems (TIIS)
/
제15권3호
/
pp.874-890
/
2021
With the widespread deployment of the fifth-generation (5G) communication networks, various real-time applications are rapidly increasing and generating massive traffic on backhaul network environments. In this scenario, network congestion will occur when the communication and computation resources exceed the maximum available capacity, which severely degrades the network performance. To alleviate this problem, this paper proposed an intelligent resource allocation (IRA) to integrate with the extant resource adjustment (ERA) approach mainly based on the convergence of support vector machine (SVM) algorithm, software-defined networking (SDN), and mobile edge computing (MEC) paradigms. The proposed scheme acquires predictable schedules to adapt the downlink (DL) transmission towards off-peak hour intervals as a predominant priority. Accordingly, the peak hour bandwidth resources for serving real-time uplink (UL) transmission enlarge its capacity for a variety of mission-critical applications. Furthermore, to advance and boost gateway computation resources, MEC servers are implemented and integrated with the proposed scheme in this study. In the conclusive simulation results, the performance evaluation analyzes and compares the proposed scheme with the conventional approach over a variety of QoS metrics including network delay, jitter, packet drop ratio, packet delivery ratio, and throughput.
Kim, Yeonjoo;Kim, Siyeon;Hwang, Sungjoo;Hong, Seok Hwan
국제학술발표논문집
/
The 9th International Conference on Construction Engineering and Project Management
/
pp.1243-1244
/
2022
In recent years, the growing interest in off-site construction has led to factories scaling up their manufacturing and production processes in the construction sector. Consequently, continuous large-scale site monitoring in low-variability environments, such as prefabricated components production plants (precast concrete production), has gained increasing importance. Although many studies on computer vision-based site monitoring have been conducted, challenges for deploying this technology for large-scale field applications still remain. One of the issues is collecting and transmitting vast amounts of video data. Continuous site monitoring systems are based on real-time video data collection and analysis, which requires excessive computational resources and network traffic. In addition, it is difficult to integrate various object information with different sizes and scales into a single scene. Various sizes and types of objects (e.g., workers, heavy equipment, and materials) exist in a plant production environment, and these objects should be detected simultaneously for effective site monitoring. However, with the existing object detection algorithms, it is difficult to simultaneously detect objects with significant differences in size because collecting and training massive amounts of object image data with various scales is necessary. This study thus developed a large-scale site monitoring system using edge computing and a small-object detection system to solve these problems. Edge computing is a distributed information technology architecture wherein the image or video data is processed near the originating source, not on a centralized server or cloud. By inferring information from the AI computing module equipped with CCTVs and communicating only the processed information with the server, it is possible to reduce excessive network traffic. Small-object detection is an innovative method to detect different-sized objects by cropping the raw image and setting the appropriate number of rows and columns for image splitting based on the target object size. This enables the detection of small objects from cropped and magnified images. The detected small objects can then be expressed in the original image. In the inference process, this study used the YOLO-v5 algorithm, known for its fast processing speed and widely used for real-time object detection. This method could effectively detect large and even small objects that were difficult to detect with the existing object detection algorithms. When the large-scale site monitoring system was tested, it performed well in detecting small objects, such as workers in a large-scale view of construction sites, which were inaccurately detected by the existing algorithms. Our next goal is to incorporate various safety monitoring and risk analysis algorithms into this system, such as collision risk estimation, based on the time-to-collision concept, enabling the optimization of safety routes by accumulating workers' paths and inferring the risky areas based on workers' trajectory patterns. Through such developments, this continuous large-scale site monitoring system can guide a construction plant's safety management system more effectively.
최근 스마트 기술이 다양한 정보시스템 분야에 적용되고 있다. 특히, 기존 도서관 서비스 분야는 디지털도서관을 넘어 스마트 도서관으로 변화되었다. 이러한 변화의 환경에서 다양한 콘텐츠와 서비스 그리고 사용자와 스마트 디바이스를 지원하는 도서관 서비스 소프트웨어 플랫폼이 요구된다. 기존 도서관 서비스는 서로 다른 이기종의 도서관 시스템간의 의미적 상호운용성이 저해되는 제한점을 갖고 있다. 본 논문은 다양한 콘텐츠 제공과 시스템간의 상호작용 그리고 서비스의 통합에 중점을 두어 미래 도서관 시스템의 원형으로 링크드오픈데이터 기반의 스마트 라이브러리 제안한다. 링크드 오픈데이터 기반 스마트 라이브러리는 첨단 정보기술이 모여진 혁신적인 시스템이다. 우리는 링크드오픈데이터를 기반으로 스마트 라이브러리를 위한 다양한 요구사항에 따라 시스템 환경을 설계하였다. 이용자의 요구사항과 정보기술의 에코시스템을 고려하여 스마트 라이브러리 시스템의 기능적 요구사항에 대해 기술한다. 또한 기능적 요구사항을 수용하고 다양한 스마트 디바이스를 통해 사용자에게 스마트 지식 서비스를 제공할 수 있는 참조 프레임워크를 보여준다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.