• Title/Summary/Keyword: Edge-Cloud Systems

Search Result 77, Processing Time 0.021 seconds

An Overview of Mobile Edge Computing: Architecture, Technology and Direction

  • Rasheed, Arslan;Chong, Peter Han Joo;Ho, Ivan Wang-Hei;Li, Xue Jun;Liu, William
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.10
    • /
    • pp.4849-4864
    • /
    • 2019
  • Modern applications such as augmented reality, connected vehicles, video streaming and gaming have stringent requirements on latency, bandwidth and computation resources. The explosion in data generation by mobile devices has further exacerbated the situation. Mobile Edge Computing (MEC) is a recent addition to the edge computing paradigm that amalgamates the cloud computing capabilities with cellular communications. The concept of MEC is to relocate the cloud capabilities to the edge of the network for yielding ultra-low latency, high computation, high bandwidth, low burden on the core network, enhanced quality of experience (QoE), and efficient resource utilization. In this paper, we provide a comprehensive overview on different traits of MEC including its use cases, architecture, computation offloading, security, economic aspects, research challenges, and potential future directions.

A Monitoring Scheme Based on Artificial Intelligence in Mobile Edge Cloud Computing Environments (모바일 엣지 클라우드 환경에서 인공지능 기반 모니터링 기법)

  • Lim, JongBeom;Choi, HeeSeok;Yu, HeonChang
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.7 no.2
    • /
    • pp.27-32
    • /
    • 2018
  • One of the crucial issues in mobile edge cloud computing environments is to monitor mobile devices. Due to the inherit properties of mobile devices, they are prone to unstable behavior that leads to failures. In order to satisfy the service level agreement (SLA), the mobile edge cloud administrators should take appropriate measures through a monitoring scheme. In this paper, we propose a monitoring scheme of mobile devices based on artificial intelligence in mobile edge cloud computing environments. The proposed monitoring scheme is able to measure faults of mobile devices based on previous and current monitoring information. To this end, we adapt the hidden markov chain model, one of the artificial intelligence technologies, to monitor mobile devices. We validate our monitoring scheme based on the hidden markov chain model. The proposed monitoring scheme can also be used in general cloud computing environments to monitor virtual machines.

Smart Anti-jamming Mobile Communication for Cloud and Edge-Aided UAV Network

  • Li, Zhiwei;Lu, Yu;Wang, Zengguang;Qiao, Wenxin;Zhao, Donghao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.12
    • /
    • pp.4682-4705
    • /
    • 2020
  • The Unmanned Aerial Vehicles (UAV) networks consisting of low-cost UAVs are very vulnerable to smart jammers that can choose their jamming policies based on the ongoing communication policies accordingly. In this article, we propose a novel cloud and edge-aided mobile communication scheme for low-cost UAV network against smart jamming. The challenge of this problem is to design a communication scheme that not only meets the requirements of defending against smart jamming attack, but also can be deployed on low-cost UAV platforms. In addition, related studies neglect the problem of decision-making algorithm failure caused by intermittent ground-to-air communication. In this scheme, we use the policy network deployed on the cloud and edge servers to generate an emergency policy tables, and regularly update the generated policy table to the UAVs to solve the decision-making problem when communications are interrupted. In the operation of this communication scheme, UAVs need to offload massive computing tasks to the cloud or the edge servers. In order to prevent these computing tasks from being offloaded to a single computing resource, we deployed a lightweight game algorithm to ensure that the three types of computing resources, namely local, edge and cloud, can maximize their effectiveness. The simulation results show that our communication scheme has only a small decrease in the SINR of UAVs network in the case of momentary communication interruption, and the SINR performance of our algorithm is higher than that of the original Q-learning algorithm.

Design of Efficient Edge Computing based on Learning Factors Sharing with Cloud in a Smart Factory Domain (스마트 팩토리 환경에서 클라우드와 학습된 요소 공유 방법 기반의 효율적 엣지 컴퓨팅 설계)

  • Hwang, Zi-on
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.11
    • /
    • pp.2167-2175
    • /
    • 2017
  • In recent years, an IoT is dramatically developing according to the enhancement of AI, the increase of connected devices, and the high-performance cloud systems. Huge data produced by many devices and sensors is expanding the scope of services, such as an intelligent diagnostics, a recommendation service, as well as a smart monitoring service. The studies of edge computing are limited as a role of small server system with high quality HW resources. However, there are specialized requirements in a smart factory domain needed edge computing. The edges are needed to pre-process containing tiny filtering, pre-formatting, as well as merging of group contexts and manage the regional rules. So, in this paper, we extract the features and requirements in a scope of efficiency and robustness. Our edge offers to decrease a network resource consumption and update rules and learning models. Moreover, we propose architecture of edge computing based on learning factors sharing with a cloud system in a smart factory.

The Design of Dynamic Fog Cloud System using mDBaaS

  • Hwang, Chigon;Shin, Hyoyoung;Lee, Jong-Yong;Jung, Kyedong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.9 no.4
    • /
    • pp.59-66
    • /
    • 2017
  • Cloud computing has evolved into a core computing infrastructure for the internet that encompasses content, as well as communications, applications and commerce. By providing powerful computing and communications capabilities in the palm of the hand everywhere with a variety of smart devices, mobile applications such as virtual reality, sensing and navigation have emerged and radically changed the patterns people live. The data that is generated is getting bigger. Cloud computing, on the other hand, has problems with system load and speed due to the collection, processing and control of remote data. To solve this problem, fog computing has been proposed in which data is collected and processed at an edge. In this paper, we propose a system that dynamically selects a fog server that acts as a cloud in the edge. It serves as a mediator in the cloud, and provides information on the services and systems belonging to the cloud to the mobile device so that the mobile device can act as a fog. When the role of the fog system is complete, we provide it to the cloud to virtualize the fog. The heterogeneous problem of data of mobile nodes can be solved by using mDBaaS (Mobile DataBase as a Service) and we propose a system design method for this.

Efficient Privacy-Preserving Duplicate Elimination in Edge Computing Environment Based on Trusted Execution Environment (신뢰실행환경기반 엣지컴퓨팅 환경에서의 암호문에 대한 효율적 프라이버시 보존 데이터 중복제거)

  • Koo, Dongyoung
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.9
    • /
    • pp.305-316
    • /
    • 2022
  • With the flood of digital data owing to the Internet of Things and big data, cloud service providers that process and store vast amount of data from multiple users can apply duplicate data elimination technique for efficient data management. The user experience can be improved as the notion of edge computing paradigm is introduced as an extension of the cloud computing to improve problems such as network congestion to a central cloud server and reduced computational efficiency. However, the addition of a new edge device that is not entirely reliable in the edge computing may cause increase in the computational complexity for additional cryptographic operations to preserve data privacy in duplicate identification and elimination process. In this paper, we propose an efficiency-improved duplicate data elimination protocol while preserving data privacy with an optimized user-edge-cloud communication framework by utilizing a trusted execution environment. Direct sharing of secret information between the user and the central cloud server can minimize the computational complexity in edge devices and enables the use of efficient encryption algorithms at the side of cloud service providers. Users also improve the user experience by offloading data to edge devices, enabling duplicate elimination and independent activity. Through experiments, efficiency of the proposed scheme has been analyzed such as up to 78x improvements in computation during data outsourcing process compared to the previous study which does not exploit trusted execution environment in edge computing architecture.

Implementation of AIoT Edge Cluster System via Distributed Deep Learning Pipeline

  • Jeon, Sung-Ho;Lee, Cheol-Gyu;Lee, Jae-Deok;Kim, Bo-Seok;Kim, Joo-Man
    • International journal of advanced smart convergence
    • /
    • v.10 no.4
    • /
    • pp.278-288
    • /
    • 2021
  • Recently, IoT systems are cloud-based, so that continuous and large amounts of data collected from sensor nodes are processed in the data server through the cloud. However, in the centralized configuration of large-scale cloud computing, computational processing must be performed at a physical location where data collection and processing take place, and the need for edge computers to reduce the network load of the cloud system is gradually expanding. In this paper, a cluster system consisting of 6 inexpensive Raspberry Pi boards was constructed to perform fast data processing. And we propose "Kubernetes cluster system(KCS)" for processing large data collection and analysis by model distribution and data pipeline method. To compare the performance of this study, an ensemble model of deep learning was built, and the accuracy, processing performance, and processing time through the proposed KCS system and model distribution were compared and analyzed. As a result, the ensemble model was excellent in accuracy, but the KCS implemented as a data pipeline proved to be superior in processing speed..

Tracking Data through Tracking Data Server in Edge Computing (엣지 컴퓨팅 환경에서 추적 데이터 서버를 통한 데이터 추적)

  • Lim, Han-wool;Byoun, Won-jun;Yun, Joobeom
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.3
    • /
    • pp.443-452
    • /
    • 2021
  • One of the key technologies in edge computing is that it always provides services close to the user by moving data between edge servers according to the user's movements. As such, the movement of data between edge servers is frequent. As IoT technology advances and usage areas expand, the data generated also increases, requiring technology to accurately track and process each data to properly manage the data present in the edge computing environment. Currently, cloud systems do not have data disposal technology based on tracking technology for data movement and distribution in their environment, so users cannot see where it is now, whether it is properly removed or not left in the cloud system if users request it to be deleted. In this paper, we propose a tracking data server to create and manage the movement and distribution of data for each edge server and data stored in the central cloud in an edge computing environment.

A Survey of Computational Offloading in Cloud/Edge-based Architectures: Strategies, Optimization Models and Challenges

  • Alqarni, Manal M.;Cherif, Asma;Alkayal, Entisar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.3
    • /
    • pp.952-973
    • /
    • 2021
  • In recent years, mobile devices have become an essential part of daily life. More and more applications are being supported by mobile devices thanks to edge computing, which represents an emergent architecture that provides computing, storage, and networking capabilities for mobile devices. In edge computing, heavy tasks are offloaded to edge nodes to alleviate the computations on the mobile side. However, offloading computational tasks may incur extra energy consumption and delays due to network congestion and server queues. Therefore, it is necessary to optimize offloading decisions to minimize time, energy, and payment costs. In this article, different offloading models are examined to identify the offloading parameters that need to be optimized. The paper investigates and compares several optimization techniques used to optimize offloading decisions, specifically Swarm Intelligence (SI) models, since they are best suited to the distributed aspect of edge computing. Furthermore, based on the literature review, this study concludes that a Cuckoo Search Algorithm (CSA) in an edge-based architecture is a good solution for balancing energy consumption, time, and cost.

A Survey on 5G Enabled Multi-Access Edge Computing for Smart Cities: Issues and Future Prospects

  • Tufail, Ali;Namoun, Abdallah;Alrehaili, Ahmed;Ali, Arshad
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.107-118
    • /
    • 2021
  • The deployment of 5G is in full swing, with a significant yearly growth in the data traffic expected to reach 26% by the year and data consumption to reach 122 EB per month by 2022 [10]. In parallel, the idea of smart cities has been implemented by various governments and private organizations. One of the main objectives of 5G deployment is to help develop and realize smart cities. 5G can support the enhanced data delivery requirements and the mass connection requirements of a smart city environment. However, for specific high-demanding applications like tactile Internet, transportation, and augmented reality, the cloud-based 5G infrastructure cannot deliver the required quality of services. We suggest using multi-access edge computing (MEC) technology for smart cities' environments to provide the necessary support. In cloud computing, the dependency on a central server for computation and storage adds extra cost in terms of higher latency. We present a few scenarios to demonstrate how the MEC, with its distributed architecture and closer proximity to the end nodes can significantly improve the quality of services by reducing the latency. This paper has surveyed the existing work in MEC for 5G and highlights various challenges and opportunities. Moreover, we propose a unique framework based on the use of MEC for 5G in a smart city environment. This framework works at multiple levels, where each level has its own defined functionalities. The proposed framework uses the MEC and introduces edge-sub levels to keep the computing infrastructure much closer to the end nodes.