• Title/Summary/Keyword: Edge milling

Search Result 112, Processing Time 0.028 seconds

Development of Automated Edge Milling System for Ship Stiffener Plate (선박 보강부재 모서리 자동가공 시스템 개발)

  • Taek-Young Shin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.4_2
    • /
    • pp.679-686
    • /
    • 2023
  • According to the PSPC (Performance Standard for Protective coatings) rule, the edge preparation must keep 2R or 3-pass grinding. The stiffener plate edge grinding of the ship inside is manually progressed by worker and worked with just one pass grinding. In addition, the poor working condition cause grinding workers to avoid working in them, and the quality is determined by the skill-level of a worker. This research developed optimal tool for edge milling. In order to milling various collar plates edge, this research developed vision system that can recognize the edge points and it developed a program that operator can adjust the amount of cutting and speed, and add various features so that milling quality would be improved. So, this research focused on overcoming the difficulties in working condition and development of automated milling machine for ship stiffener plate.

New fabrication methods of step-edge Josephson junctions on SrTiO$_3$, MgO, LaAlO$_3$ single crystal substrates for YBa$_2$Cu$_3$O$_7$ thin films by using ion milling technique

  • Moon, Sunk-Yung;Ahn, Jong-Rok;Hwang, Yun-Seok;Lee, Soon-Gul;Choi, Hee-Seok;Kim, Jin-Tae
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.146-150
    • /
    • 2000
  • Two methods have been investigated to fabricate good quality step-edge Josephson junctions on STO, MgO, and LAO single crystal substrates. One is the annealing of substrates at 1050$^{\circ}$C in 1 atmospheric oxygen after Ar-ion milling. The other is the cleaning of step-edge by using Ar ion milling. The step-edge is characterized with atomic force microscope (AFM) images. And YBCO thin films are deposited by using pulsed laser. The I-V properties of step-edge junctions are characterized. The yield rate of step-edge junction is increased by new fabrication methods.

  • PDF

A Study on the Minimization of Water Damage for the Asphalt Inlay of Old Concrete Pavement (노후 콘크리트 포장 절삭 덧씌우기의 침투수에 의한 파손 최소화 방안 연구)

  • Kang, Won Pyoung;Yeom, Kwang Jae;Suh, Young Chan;Lee, Kyoung Ha;Kang, Min Soo
    • International Journal of Highway Engineering
    • /
    • v.15 no.4
    • /
    • pp.53-63
    • /
    • 2013
  • PURPOSES: The purpose of this study was to investigate the disintegration mechanism of concrete due to the infiltration of the moisture to the milling overlay pavement and to come up with a method to minimize the disintegration as well as verifying the effectiveness of the edge sealing and Fogseal method. METHODS : This study investigated the distress mechanism due to the infiltrated moisture remaining in the milling overlay pavement through chloride freezing test and verified the effectiveness of the sealing of the milling edge and fog seal methods, which have been devised to minimize the moisture infiltration, through laboratory water permeability test. Additionally, long-term pavement performance was compared for the effectiveness of the proposed method through under loading test, and field water permeability test was carried out to verify the field applicability of the proposed method. RESULTS: The result of the research confirmed that chloride deteriorates the concrete surface through disintegration and lowers its strength and that the laboratory moisture infiltration test verified the effectiveness of the milling edge sealing and fog seal methods in the deterrence of moisture infiltration to the overlay pavement with excellent long-term performance of the pavement treated with the proposed method. Although the field water permeability test revealed some deterrence of moisture infiltration of the milling edge sealing and fog seal methods to a certain extent, the difference was a little. CONCLUSIONS: The milling edge sealing and fog seal methods are limited in their effectiveness for the cases of improvident compaction management or mixture with large void, and it is believed that installation of subsurface drainage is more effective in these cases.

Design of A Small Thin Milling Cutter Considering Built-up Edge (구성인선을 고려한 소형 박판 밀링공구의 설계)

  • Jung, Kyoung-Deuk;Ko, Tae-Jo;Kim, Hee-Sool
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.5
    • /
    • pp.130-136
    • /
    • 2001
  • Generally, a metal slitting saw is plain milling cutter with thickness less than 3/16 inch. This is used for cutting a workpiece that high dimensional accuracy and surface finish is necessary. A small thin milling cutter like a metal slitting saw is useful for machining a narrow groove. In this case, built up edge(BUE) is severe at each tooth and affects the surface integrity of the machined surface and tool wear. It is well known that tool geometry and cutting conditions are decisive factors to remove BUE. In this paper, we optimized the geometry of the milling cutter and selected cutting conditions to remove BUE by the experimental investigation. The experiment was planned with Taguchi method based on the orthogonal array of design factors such as coating, rake angle, number of tooth, cutting speed, feed rate. Response table was obtained from the number of built-up edge generated at tooth. The optimized tool geometry and cutting conditions could be determined through response table. In addition, the relative effect of factors was identified bh the analysis of variance (ANOVA). Finally, coating and cutting speed turned out important factors for BUE.

  • PDF

Development of Edge Milling Automation System for PSPC Application (PSPC 적용을 위한 모서리 밀링 자동화 시스템 개발)

  • Ryu, Hyun-Su;Park, Il-Hwan;Ko, Dae-Eun;Kim, Ho-Kyeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.122-130
    • /
    • 2018
  • The International Maritime Organization has enacted mandatory performance standards for protective coatings (PSPC), and as a result, shipyards must perform 2R or 3-pass milling on the edges of color plates. However, manual milling could result in many problems in terms of work environment and productivity. Therefore, it is necessary to develop an edge milling automation system that can satisfy the regulations. In this study, a basic design for an edge milling automation system was developed for standard color plates, and the machining process was established by applying shape recognition and a machining path generation algorithm. In addition, operating software was developed, and suitable milling conditions were derived based on the results of a milling test. The results could be used to build an automation system that meets the PSPC requirements and improve productivity.

A study on the capability of edge shape milling tool with the operatio parameters of equipment (장비운영요소변화에 따른 석재측면 성형공구의 성능시험 연구)

  • 선우춘
    • Tunnel and Underground Space
    • /
    • v.8 no.4
    • /
    • pp.332-341
    • /
    • 1998
  • Conventional polishing of stone panel edges has been done by hand. While this has changed somewhat with the advent of automatic machines, it is still very much a hand finishing technology. For the development of edge shape milling tool, the primary test on characteristics of edge shape milling tool was carried out. This paper presents the results of tests focused upon the milling capability that was varied by the variables of operation parameters. Author tried to confirm the effect of six operation parameters of equipment such as rotation speed, advance speed, applied load, water flow rate and rotational direction. The result from test was described in term of shape milling capability that was defined as cutting volume of rock by unit weight of tool wear. The variance of the results could indicate the optimum level of each operating parameters. The test was also carried out to determine the abrasion resistance varied according to the abrasive flow rate. The abrasion resistance was increased with the abrasive flow rate, but over some rate it was not changed.

  • PDF

A Study on Exit Burr Formation in Face Milling (페이스 밀링 가공시 출구버 형성에 관한 연구)

  • Han, Sang-Woo;Ko, Sung-Lim
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.8
    • /
    • pp.55-62
    • /
    • 2002
  • A burr has been defined as undesirable projection of material formed as the result of plastic flow from a cutting or shearing operation. It is unavoidable in all kinds of machining operation. As a result, burr makes troubles on manufacturing process due to deburring cost, quality of products and productivity. In face milling operation, burrs are formed along five edges on the workpiece. In this study, the primary interest is about exit burr The influence of the cutting parameters on the formation of exit burrs in face milling will be described experimentally. Using the results of experimental study, burr types are classified according to appearance and formation mechanism in exit burr. The burr formation mechanism in each type of burr is suggested. Data bases are developed to predict burr formation result.

Plunge Milling Force Model using Instantaneous Cutting Force Coefficients

  • Ko Jeong-Hoon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.3
    • /
    • pp.8-13
    • /
    • 2006
  • Plunge milling process is used for machining hole and is widely used in aerospace, automobile, and die/mold industries. The cutter is fed in the direction of spindle axis which has the highest structural rigidity. The kinematics of plunge milling differs from the traditional turning and milling in aspect of tool engagement and chip generation. This paper proposes the mechanistic cutting force model for plunge milling. Uncut chip thickness is calculated using the present cutter edge position and the previous cutter edge position. Instantaneous cutting force coefficients, which depend only on instantaneous uncut chip thickness, are derived based on the mechanistic approach. The developed cutting force model is verified through comparison of the predicted and the measured cutting forces.

A Probabilistic Model for the Prediction of Burr Formation in Face Milling

  • Suneung Ahn
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.23 no.60
    • /
    • pp.23-36
    • /
    • 2000
  • A probabilistic model of burr formation in face milling of gray cast iron is proposed. During a face milling operation, an irregular pattern of the edge profile consisting of burrs and edge breakouts is observed at the end of cut. Based on the metal cutting theory, we derive a probabilistic model. The operational bayesian modeling approach is adopted to include the relevant theory in the model.

  • PDF