• 제목/요약/키워드: Edge intelligence

검색결과 169건 처리시간 0.021초

A hybrid deep neural network compression approach enabling edge intelligence for data anomaly detection in smart structural health monitoring systems

  • Tarutal Ghosh Mondal;Jau-Yu Chou;Yuguang Fu;Jianxiao Mao
    • Smart Structures and Systems
    • /
    • 제32권3호
    • /
    • pp.179-193
    • /
    • 2023
  • This study explores an alternative to the existing centralized process for data anomaly detection in modern Internet of Things (IoT)-based structural health monitoring (SHM) systems. An edge intelligence framework is proposed for the early detection and classification of various data anomalies facilitating quality enhancement of acquired data before transmitting to a central system. State-of-the-art deep neural network pruning techniques are investigated and compared aiming to significantly reduce the network size so that it can run efficiently on resource-constrained edge devices such as wireless smart sensors. Further, depthwise separable convolution (DSC) is invoked, the integration of which with advanced structural pruning methods exhibited superior compression capability. Last but not least, quantization-aware training (QAT) is adopted for faster processing and lower memory and power consumption. The proposed edge intelligence framework will eventually lead to reduced network overload and latency. This will enable intelligent self-adaptation strategies to be employed to timely deal with a faulty sensor, minimizing the wasteful use of power, memory, and other resources in wireless smart sensors, increasing efficiency, and reducing maintenance costs for modern smart SHM systems. This study presents a theoretical foundation for the proposed framework, the validation of which through actual field trials is a scope for future work.

Intelligent Resource Management Schemes for Systems, Services, and Applications of Cloud Computing Based on Artificial Intelligence

  • Lim, JongBeom;Lee, DaeWon;Chung, Kwang-Sik;Yu, HeonChang
    • Journal of Information Processing Systems
    • /
    • 제15권5호
    • /
    • pp.1192-1200
    • /
    • 2019
  • Recently, artificial intelligence techniques have been widely used in the computer science field, such as the Internet of Things, big data, cloud computing, and mobile computing. In particular, resource management is of utmost importance for maintaining the quality of services, service-level agreements, and the availability of the system. In this paper, we review and analyze various ways to meet the requirements of cloud resource management based on artificial intelligence. We divide cloud resource management techniques based on artificial intelligence into three categories: fog computing systems, edge-cloud systems, and intelligent cloud computing systems. The aim of the paper is to propose an intelligent resource management scheme that manages mobile resources by monitoring devices' statuses and predicting their future stability based on one of the artificial intelligence techniques. We explore how our proposed resource management scheme can be extended to various cloud-based systems.

A Four-Layer Robust Storage in Cloud using Privacy Preserving Technique with Reliable Computational Intelligence in Fog-Edge

  • Nirmala, E.;Muthurajkumar, S.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권9호
    • /
    • pp.3870-3884
    • /
    • 2020
  • The proposed framework of Four Layer Robust Storage in Cloud (FLRSC) architecture involves host server, local host and edge devices in addition to Virtual Machine Monitoring (VMM). The goal is to protect the privacy of stored data at edge devices. The computational intelligence (CI) part of our algorithm distributes blocks of data to three different layers by partially encoded and forwarded for decoding to the next layer using hash and greed Solomon algorithms. VMM monitoring uses snapshot algorithm to detect intrusion. The proposed system is compared with Tiang Wang method to validate efficiency of data transfer with security. Hence, security is proven against the indexed efficiency. It is an important study to integrate communication between local host software and nearer edge devices through different channels by verifying snapshot using lamport mechanism to ensure integrity and security at software level thereby reducing the latency. It also provides thorough knowledge and understanding about data communication at software level with VMM. The performance evaluation and feasibility study of security in FLRSC against three-layered approach is proven over 232 blocks of data with 98% accuracy. Practical implications and contributions to the growing knowledge base are highlighted along with directions for further research.

모바일 엣지 클라우드 환경에서 인공지능 기반 모니터링 기법 (A Monitoring Scheme Based on Artificial Intelligence in Mobile Edge Cloud Computing Environments)

  • 임종범;최희석;유헌창
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제7권2호
    • /
    • pp.27-32
    • /
    • 2018
  • 모바일 엣지 클라우드 환경에서 중요하게 다루어야 할 사항 중 하나는 모바일 장치에 대한 모니터링이다. 모바일 장치는 장치의 특성상 불안정한 상태가 발생하여 결함이 발생할 수 있기 때문에 모바일 엣지 클라우드의 SLA (Service Level Agreement)를 만족시키기 위해서는 모바일 장치의 모니터링 기법을 통해 결함을 측정하여 이에 대한 조치를 수행하여야 한다. 이 논문에서는 모바일 엣지 클라우드 환경에서 인공지능 기반 모바일 장치 모니터링 기법을 제안한다. 제안하는 모니터링 기법은 모바일 장치에 대한 이전 모니터링 정보와 현재 모니터링 정보를 기반으로 모바일 장치의 결함 발생을 측정할 수 있도록 설계 되었다. 이를 위해 인공지능 기법 중 하나인 은닉 마르코프 체인 모델을 모바일 장치에 대한 모니터링 기법에 적용하였다. 실험 평가를 통해 제안하는 모니터링 기법에 대한 검증을 수행하였다. 제안하는 기법은 모바일 장치뿐만 아니라 일반적인 클라우드 환경에서의 가상 머신을 모니터링 하는 방법으로도 활용할 수 있도록 설계되었다.

A Survey of Computational Offloading in Cloud/Edge-based Architectures: Strategies, Optimization Models and Challenges

  • Alqarni, Manal M.;Cherif, Asma;Alkayal, Entisar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권3호
    • /
    • pp.952-973
    • /
    • 2021
  • In recent years, mobile devices have become an essential part of daily life. More and more applications are being supported by mobile devices thanks to edge computing, which represents an emergent architecture that provides computing, storage, and networking capabilities for mobile devices. In edge computing, heavy tasks are offloaded to edge nodes to alleviate the computations on the mobile side. However, offloading computational tasks may incur extra energy consumption and delays due to network congestion and server queues. Therefore, it is necessary to optimize offloading decisions to minimize time, energy, and payment costs. In this article, different offloading models are examined to identify the offloading parameters that need to be optimized. The paper investigates and compares several optimization techniques used to optimize offloading decisions, specifically Swarm Intelligence (SI) models, since they are best suited to the distributed aspect of edge computing. Furthermore, based on the literature review, this study concludes that a Cuckoo Search Algorithm (CSA) in an edge-based architecture is a good solution for balancing energy consumption, time, and cost.

트랜스포머 블록과 윤곽선 디코더를 활용한 딥러닝 기반의 피부 병변 분할 방법 (Deep Learning based Skin Lesion Segmentation Using Transformer Block and Edge Decoder)

  • 김지훈;박경리;김해문;문영식
    • 한국정보통신학회논문지
    • /
    • 제26권4호
    • /
    • pp.533-540
    • /
    • 2022
  • 전문의는 피부암을 조기에 발견하기 위해 피부경을 사용하여 진단하지만 다양한 형태로 인해 피부 병변을 판단하는 데 어려움이 있다. 최근 높은 성능을 보인 딥러닝을 이용한 피부 병변 분할 방법이 제안되었지만 피부와 피부 병변 경계가 명확하지 않아서 피부 병변을 분할하는 데 문제점이 있었다. 이러한 문제를 개선하기 위해 제안하는 방법은 효과적으로 피부 병변을 분할하기 위해 트랜스포머 블록을 구성하였으며, 네트워크의 각 계층마다 윤곽선 디코더를 구성하여 피부 병변을 자세히 분할하였다. 실험 결과, 제안하는 방법은 기존의 방법보다 Dice coefficient 기준 0.041 ~ 0.071, Jaccard Index 기준 0.067 ~ 0.112의 성능 향상을 보인다.

스마트서비스를 위한 경량형 IIoT Edge 미들웨어 시스템 개발 (Development of IIoT Edge Middleware System for Smart Services)

  • 이한;황준석;강대현;정석찬
    • 한국빅데이터학회지
    • /
    • 제6권1호
    • /
    • pp.115-125
    • /
    • 2021
  • 각종 ICT 기술 혁신 및 디지털트랜스포메이션(Digital Transformation)에 의해 사물인터넷(Internet of Things : IoT) 환경이 점차 지능화, 분산화, 자동화된 서비스를 요구하고 있으며, 특히 통신네트워크(5G),데이터 분석 및 인공지능(AI), 디지털 트윈(Digital Twin) 기술이 접목되는 산업사물인터넷(Industrial IoT : IIoT)에서의 고도화되고 안정적인 스마트서비스 제공 환경이 요구되고 있다. 본 연구에서는 다양한 산업현장의 설비 장치와 센서 등 이기종 장치와의 유연한 연계와 신속하고 안정적인 데이터 수집 및 처리 등을 위한 IIoT Edge 미들웨어 시스템을 제안하였다.

멀티 에이전트 에지 컴퓨팅 환경에서 확장성을 지원하는 딥러닝 기반 동적 스케줄링 (Deep Learning-Based Dynamic Scheduling with Multi-Agents Supporting Scalability in Edge Computing Environments)

  • 임종범
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권9호
    • /
    • pp.399-406
    • /
    • 2023
  • 클라우드 컴퓨팅은 에지 서버가 동작하는 포그(fog) 레이어가 결합된 에지(edge) 컴퓨팅 아키텍처로 진화하고 있다. 에지 컴퓨팅 아키텍처가 관심을 받는 이유는 짧은 통신 지연으로 실시간 IoT 응용을 지원할 수 있기 때문이다. 이와 동시에 인공지능 기술을 도입한 많은 클라우드 작업 스케줄링 기법들이 제안되었다. 인공지능 기반의 클라우드 작업 스케줄링 기법은 기존 기법보다 더 좋은 성능을 보이지만 스케줄링 시간이 다소 소요된다는 단점이 있다. 이 논문에서는 에지 컴퓨팅 환경에서 분산 딥러닝 학습 기반의 동적 스케줄링 기법을 제안한다. 제안하는 기법은 기존 기법보다 스케줄링 시간이 짧은 장점이 있다. 또한 멀티 에이전트를 통한 분산 딥러닝 학습의 효과성을 보이기 위해 확장적인 실험 환경에서 제안 기법과 기존 인공지능 기법의 성능일 비교 평가하였다. 성능 실험 결과 기존 인공지능 기반 클라우드 작업 스케줄링 기법보다 짧은 스케줄링 시간을 보여 IoT 실시간 응용에 적합함을 보였으며, 확장적인 실험에서도 제안 기법이 완료된 작업의 수에 대하여 우수한 성능을 보임을 증명하였다.

Summarizing the Differences in Chinese-Vietnamese Bilingual News

  • Wu, Jinjuan;Yu, Zhengtao;Liu, Shulong;Zhang, Yafei;Gao, Shengxiang
    • Journal of Information Processing Systems
    • /
    • 제15권6호
    • /
    • pp.1365-1377
    • /
    • 2019
  • Summarizing the differences in Chinese-Vietnamese bilingual news plays an important supporting role in the comparative analysis of news views between China and Vietnam. Aiming at cross-language problems in the analysis of the differences between Chinese and Vietnamese bilingual news, we propose a new method of summarizing the differences based on an undirected graph model. The method extracts elements to represent the sentences, and builds a bridge between different languages based on Wikipedia's multilingual concept description page. Firstly, we calculate the similarity between Chinese and Vietnamese news sentences, and filter the bilingual sentences accordingly. Then we use the filtered sentences as nodes and the similarity grade as the weight of the edge to construct an undirected graph model. Finally, combining the random walk algorithm, the weight of the node is calculated according to the weight of the edge, and sentences with highest weight can be extracted as the difference summary. The experiment results show that our proposed approach achieved the highest score of 0.1837 on the annotated test set, which outperforms the state-of-the-art summarization models.

서비스형 엣지 머신러닝 기술 동향 (Trend of Edge Machine Learning as-a-Service)

  • 나중찬;전승협
    • 전자통신동향분석
    • /
    • 제37권5호
    • /
    • pp.44-53
    • /
    • 2022
  • The Internet of Things (IoT) is growing exponentially, with the number of IoT devices multiplying annually. Accordingly, the paradigm is changing from cloud computing to edge computing and even tiny edge computing because of the low latency and cost reduction. Machine learning is also shifting its role from the cloud to edge or tiny edge according to the paradigm shift. However, the fragmented and resource-constrained features of IoT devices have limited the development of artificial intelligence applications. Edge MLaaS (Machine Learning as-a-Service) has been studied to easily and quickly adopt machine learning to products and overcome the device limitations. This paper briefly summarizes what Edge MLaaS is and what element of research it requires.