• 제목/요약/키워드: Edge devices

검색결과 451건 처리시간 0.025초

임베디드 엣지 플랫폼에서의 경량 비전 트랜스포머 성능 평가 (Performance Evaluation of Efficient Vision Transformers on Embedded Edge Platforms)

  • 이민하;이성재;김태현
    • 대한임베디드공학회논문지
    • /
    • 제18권3호
    • /
    • pp.89-100
    • /
    • 2023
  • Recently, on-device artificial intelligence (AI) solutions using mobile devices and embedded edge devices have emerged in various fields, such as computer vision, to address network traffic burdens, low-energy operations, and security problems. Although vision transformer deep learning models have outperformed conventional convolutional neural network (CNN) models in computer vision, they require more computations and parameters than CNN models. Thus, they are not directly applicable to embedded edge devices with limited hardware resources. Many researchers have proposed various model compression methods or lightweight architectures for vision transformers; however, there are only a few studies evaluating the effects of model compression techniques of vision transformers on performance. Regarding this problem, this paper presents a performance evaluation of vision transformers on embedded platforms. We investigated the behaviors of three vision transformers: DeiT, LeViT, and MobileViT. Each model performance was evaluated by accuracy and inference time on edge devices using the ImageNet dataset. We assessed the effects of the quantization method applied to the models on latency enhancement and accuracy degradation by profiling the proportion of response time occupied by major operations. In addition, we evaluated the performance of each model on GPU and EdgeTPU-based edge devices. In our experimental results, LeViT showed the best performance in CPU-based edge devices, and DeiT-small showed the highest performance improvement in GPU-based edge devices. In addition, only MobileViT models showed performance improvement on EdgeTPU. Summarizing the analysis results through profiling, the degree of performance improvement of each vision transformer model was highly dependent on the proportion of parts that could be optimized in the target edge device. In summary, to apply vision transformers to on-device AI solutions, either proper operation composition and optimizations specific to target edge devices must be considered.

대규모 디바이스의 자율제어를 위한 EdgeCPS 기술 동향 (EdgeCPS Technology Trend for Massive Autonomous Things)

  • 전인걸;강성주;나갑주
    • 전자통신동향분석
    • /
    • 제37권1호
    • /
    • pp.32-41
    • /
    • 2022
  • With the development of computing technology, the convergence of ICT with existing traditional industries is being attempted. In particular, with the recent advent of 5G, connectivity with numerous AuT (autonomous Things) in the real world as well as simple mobile terminals has increased. As more devices are deployed in the real world, the need for technology for devices to learn and act autonomously to communicate with humans has begun to emerge. This article introduces "Device to the Edge," a new computing paradigm that enables various devices in smart spaces (e.g., factories, metaverse, shipyards, and city centers) to perform ultra-reliable, low-latency and high-speed processing regardless of the limitations of capability and performance. The proposed technology, referred to as EdgeCPS, can link devices to augmented virtual resources of edge servers to support complex artificial intelligence tasks and ultra-proximity services from low-specification/low-resource devices to high-performance devices.

엣지 디바이스에서의 병렬 프로그래밍 모델 성능 비교 연구 (A Performance Comparison of Parallel Programming Models on Edge Devices)

  • 남덕윤
    • 대한임베디드공학회논문지
    • /
    • 제18권4호
    • /
    • pp.165-172
    • /
    • 2023
  • Heterogeneous computing is a technology that utilizes different types of processors to perform parallel processing. It maximizes task processing and energy efficiency by leveraging various computing resources such as CPUs, GPUs, and FPGAs. On the other hand, edge computing has developed with IoT and 5G technologies. It is a distributed computing that utilizes computing resources close to clients, thereby offloading the central server. It has evolved to intelligent edge computing combined with artificial intelligence. Intelligent edge computing enables total data processing, such as context awareness, prediction, control, and simple processing for the data collected on the edge. If heterogeneous computing can be successfully applied in the edge, it is expected to maximize job processing efficiency while minimizing dependence on the central server. In this paper, experiments were conducted to verify the feasibility of various parallel programming models on high-end and low-end edge devices by using benchmark applications. We analyzed the performance of five parallel programming models on the Raspberry Pi 4 and Jetson Orin Nano as low-end and high-end devices, respectively. In the experiment, OpenACC showed the best performance on the low-end edge device and OpenSYCL on the high-end device due to the stability and optimization of system libraries.

EdgeCPS 플랫폼을 위한 지식 공유 그래프를 활용한 컴포넌트 기반 AI 응용 지원 시스템 (Component-based AI Application Support System using Knowledge Sharing Graph for EdgeCPS Platform)

  • 김영주
    • 한국정보통신학회논문지
    • /
    • 제26권8호
    • /
    • pp.1103-1110
    • /
    • 2022
  • AI 관련 산업의 급속한 발전으로 인해 무수히 많은 엣지 디바이스가 실세계에서 동작되고 있고, 이들 디바이스로 구성된 스마트 공간에서 발생하는 데이터가 상상을 초월함으로, 엣지 디비이스가 처리하는 것이 점점 어려워지고 있다. 이러한 문제를 해결하기 위해서 EdgeCPS 기술이 등장하게 되었다. EdgeCPS는 엣지 디바이스와 엣지 서버간 연동과 자원 증강 및 기능 증강을 통하여 AI 응용 서비스를 포함한 다양한 응용 서비스의 원활한 수행을 지원하기 위한 기술이다. 따라서, 본 논문에서는 EdgeCPS 플랫폼에 적용 가능한 지식 공유 그래프 기반의 컴포넌트화된 AI 응용 지원 시스템을 제안한다. 지식 공유 그래프는 AI 응용 작성에 필수적인 요소인 학습데이터, 학습된모델, 학습알고리즘, 디바이스 등에 대한 정보를 효과적으로 저장할 수 있도록 설계된다. 그리고 EdgeCPS 플랫폼의 지원 하에서 자원증강 및 기능증강을 손쉽게 변경할 수 있도록 AI 응용이 컴포넌트화 되어 동작한다. AI 응용 지원 시스템은 사용자가 손쉽게 응용을 작성할 수 있고 테스트 해 볼 수 있도록 지식 공유 그래프와 연동되고, 응용에 대한 파이프라인을 통해서 응용의 실행 양상을 사용자에게 시각화를 해 준다.

태양 에너지 수집형 IoT 엣지 컴퓨팅 환경에서 효율적인 오디오 딥러닝을 위한 에너지 적응형 데이터 전처리 기법 (Energy-Aware Data-Preprocessing Scheme for Efficient Audio Deep Learning in Solar-Powered IoT Edge Computing Environments)

  • 유연태;노동건
    • 대한임베디드공학회논문지
    • /
    • 제18권4호
    • /
    • pp.159-164
    • /
    • 2023
  • Solar energy harvesting IoT devices prioritize maximizing the utilization of collected energy due to the periodic recharging nature of solar energy, rather than minimizing energy consumption. Meanwhile, research on edge AI, which performs machine learning near the data source instead of the cloud, is actively conducted for reasons such as data confidentiality and privacy, response time, and cost. One such research area involves performing various audio AI applications using audio data collected from multiple IoT devices in an IoT edge computing environment. However, in most studies, IoT devices only perform sensing data transmission to the edge server, and all processes, including data preprocessing, are performed on the edge server. In this case, it not only leads to overload issues on the edge server but also causes network congestion by transmitting unnecessary data for learning. On the other way, if data preprocessing is delegated to each IoT device to address this issue, it leads to another problem of increased blackout time due to energy shortages in the devices. In this paper, we aim to alleviate the problem of increased blackout time in devices while mitigating issues in server-centric edge AI environments by determining where the data preprocessed based on the energy state of each IoT device. In the proposed method, IoT devices only perform the preprocessing process, which includes sound discrimination and noise removal, and transmit to the server if there is more energy available than the energy threshold required for the basic operation of the device.

에지 컴퓨팅 기반 객체탐지 서비스를 위한 이미지/동영상 데이터 처리 기법에 관한 연구 (A Study on the Image/Video Data Processing Methods for Edge Computing-Based Object Detection Service)

  • 장신원;홍용근
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제12권11호
    • /
    • pp.319-328
    • /
    • 2023
  • 에지 컴퓨팅 기술은 클라우드 컴퓨팅과 달리 기기와 사용자와 가까운 곳에서 데이터를 분석하고 판단하여 실시간 서비스, 민감한 데이터 보호, 네트워크 트래픽 감소와 같은 장점을 제공한다. 에지 컴퓨팅 플랫폼의 대표적인 오픈소스인 EdgeX Foundry는 현실 세계의 다양한 장치와 IT 시스템 사이에서 서비스를 제공하는 오픈소스 기반 엣지 미들웨어 플랫폼이다. EdgeX Foundry는 기존의 센싱된 데이터를 다루기 위한 서비스와 함께 카메라 장치를 다루기 위한 서비스를 제공하는데, 이 서비스는 단순 스트리밍 및 카메라 장치 관리만 지원할 뿐 EdgeX 내부에 장치에서 얻은 이미지 데이터를 저장하거나 처리하지 않는다. 본 논문에서는 EdgeX Foundry에서 제공하는 서비스 일부를 응용하여 EdgeX 내부에 이미지 데이터를 저장하고 처리할 수 있는 기법을 제시한다. 제시한 기법을 기반으로 실험 및 성능 평가를 위해 자율주행 분야에서 핵심적으로 사용되는 객체탐지 서비스를 위한 서비스 파이프라인을 만든 후 기존 방법과 비교 분석하였다. 이 실험을 통해 에지 컴퓨팅 플랫폼에서 이미지/동영상 데이터를 저장하고 처리하는 과정 등이 추가되었음에도 기존 방법에 비해 지연시간이 거의 없는 것을 확인할 수 있었다.

서비스형 엣지 머신러닝 기술 동향 (Trend of Edge Machine Learning as-a-Service)

  • 나중찬;전승협
    • 전자통신동향분석
    • /
    • 제37권5호
    • /
    • pp.44-53
    • /
    • 2022
  • The Internet of Things (IoT) is growing exponentially, with the number of IoT devices multiplying annually. Accordingly, the paradigm is changing from cloud computing to edge computing and even tiny edge computing because of the low latency and cost reduction. Machine learning is also shifting its role from the cloud to edge or tiny edge according to the paradigm shift. However, the fragmented and resource-constrained features of IoT devices have limited the development of artificial intelligence applications. Edge MLaaS (Machine Learning as-a-Service) has been studied to easily and quickly adopt machine learning to products and overcome the device limitations. This paper briefly summarizes what Edge MLaaS is and what element of research it requires.

청색 발광 다이오드에서 활성층의 균일성과 신뢰성 사이의 상관관계 고찰 (Correlation between the Active-Layer Uniformity and Reliability of Blue Light-Emitting Diodes)

  • 장진원;김상배
    • 대한전자공학회논문지SD
    • /
    • 제42권12호
    • /
    • pp.27-34
    • /
    • 2005
  • 활성층의 균일성 차이에 따라 서로 다른 발광특성을 보이는 소자들의 균일성과 신뢰도 사이의 상관관계를 고찰하였다. 소자들을 초기 특성에 따라 균일한 발광특성을 보이는 그룹 I과 불균일한 발광특성을 보이는 그룹 II로 분류하였다. 그룹 II 소자의 경우 온도 의존성이 더 큰 것으로 나타났으며, 두 그룹의 신뢰성 실험을 통해 크게 두 가지 성능저하 과정이 있는 것을 알았다. 칩 전체적으로 균일하게 성능저하 되는 bulk 성능저하 과정과 칩의 edge부분에서부터 성능저하가 시작되는 edge 성능저하 과정이다. 비발광성 결함에 의한 bulk 성능저하는 불균일한 발광특성을 보이는 그룹 II 소자에서 더 빠르게 진행되었다. edge 성능저하는 그룹 I, II 소자에 관계없이 고전류로 aging하였을 경우 나타났으며, n-Ohmic 접촉 영역에서 시작하여 발광하지 않는 부분이 확장되는 성능저하 과정을 확인하였다. 이에 따라 고효율, 고신뢰도 청색 발광 다이오드 제작을 위해서는 활성층의 균일도를 높이고, 전류 밀도를 균일하게 하며, 건식 식각된 mesa면의 passivation을 하여야 한다.

에지 컴퓨팅 환경을 위한 IoT와 에지 장치 간 키 동의 프로토콜 (Key-Agreement Protocol between IoT and Edge Devices for Edge Computing Environments)

  • 최정희
    • 융합정보논문지
    • /
    • 제12권2호
    • /
    • pp.23-29
    • /
    • 2022
  • 최근 사물인터넷(Internet of Things, IoT) 기기 사용 증가로 인해 클라우드 컴퓨팅 서버로 전송해 처리하는 데이터양이 급증하고, 그 결과 네트워크 관련 문제점(지연, 서버의 과부하 및 보안 위협)들이 크게 대두되고 있다. 특히, 연산 능력이 클라우드 컴퓨팅보다 낮은 에지 컴퓨팅은 수많은 IoT 기기들을 손쉽게 인증할 수 있는 경량화된 인증 알고리즘이 필요하다. 본 논문에서는 IoT와 에지 장치 간 익명성과 순방향·역방향의 비밀성을 보장하고 중간자 공격과 재전송 공격에 안정적이며, 에지 장치와 IoT 기기 특성에 적합한 경량화 알고리즘의 키 동의 프로토콜을 제안하였고, 제안한 키 동의 프로토콜을 기존 연구와 비교·분석한 결과 IoT 기기와 에지 장치에서 효율적으로 사용 가능한 경량화 프로토콜임을 보였다.

A Survey of Computational Offloading in Cloud/Edge-based Architectures: Strategies, Optimization Models and Challenges

  • Alqarni, Manal M.;Cherif, Asma;Alkayal, Entisar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권3호
    • /
    • pp.952-973
    • /
    • 2021
  • In recent years, mobile devices have become an essential part of daily life. More and more applications are being supported by mobile devices thanks to edge computing, which represents an emergent architecture that provides computing, storage, and networking capabilities for mobile devices. In edge computing, heavy tasks are offloaded to edge nodes to alleviate the computations on the mobile side. However, offloading computational tasks may incur extra energy consumption and delays due to network congestion and server queues. Therefore, it is necessary to optimize offloading decisions to minimize time, energy, and payment costs. In this article, different offloading models are examined to identify the offloading parameters that need to be optimized. The paper investigates and compares several optimization techniques used to optimize offloading decisions, specifically Swarm Intelligence (SI) models, since they are best suited to the distributed aspect of edge computing. Furthermore, based on the literature review, this study concludes that a Cuckoo Search Algorithm (CSA) in an edge-based architecture is a good solution for balancing energy consumption, time, and cost.