• Title/Summary/Keyword: Edge Network

Search Result 802, Processing Time 0.028 seconds

A High PErformance Lookup Controller for ATM based IP Packet Forwarding Engine (ATM 기반 IP 패킷 포워딩 엔진을 위한 고성능 룩업 제어기)

  • Choi, Byeong-Cheol;Kwak, Dong-Yong;Lee, Jeong-Tae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.4B
    • /
    • pp.298-305
    • /
    • 2003
  • In this paper, we proposed a high performance lookup controller for IP packet forwarding engine of ATM based label edge routers. The lookup controller is designed to provide services such as MPLS, VPN, ELL, and RT services as well as the best effort. For high speed searching for IP addresses, we employed a TCAM based hardware search device not using traditional algorithmic approaches. We also implement lookup control functions into FPGA for fast processing of packet header and lookup control. The proposed lookup controller is designed to support differenciated services for users and to process in pipelined mechanism for performance improvement. A two-step search scheme is also applied to perform lookup for the key combined with multi-field of packet header. We found that the proposed lookup controller provides the performance of about 16M packets per second through simulations.

A Study on Image Recognition based on the Characteristics of Retinal Cells (망막 세포 특성에 의한 영상인식에 관한 연구)

  • Cho, Jae-Hyun;Kim, Do-Hyeon;Kim, Kwang-Baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.11
    • /
    • pp.2143-2149
    • /
    • 2007
  • Visual Cortex Stimulator is among artificial retina prosthesis for blind man, is the method that stimulate the brain cell directly without processing the information from retina to visual cortex. In this paper, we propose image construction and recognition model that is similar to human visual processing by recognizing the feature data with orientation information, that is, the characteristics of visual cortex. Back propagation algorithm based on Delta-bar delta is used to recognize after extracting image feature by Kirsh edge detector. Various numerical patterns are used to analyze the performance of proposed method. In experiment, the proposed recognition model to extract image characteristics with the orientation of information from retinal cells to visual cortex makes a little difference in a recognition rate but shows that it is not sensitive in a variety of learning rates similar to human vision system.

A Free Agent Algorithm for Min-Cut Problem (최소절단 문제의 자유계약 알고리즘)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.4
    • /
    • pp.27-33
    • /
    • 2019
  • The min-cut problem that decides the maximum flow in a complex network flows from source(s) to sink(t) is known as a hard problem. The augmenting path algorithm divides into single path and decides the bottleneck point(edge), but the min-cut section to be decide additionally. This paper suggests O(n) time complexity heuristic greedy algorithm for the number of vertices n that applies free agent system in a pro-sports field. The free agent method assumes $N_G(S),N_G(T)$vertices among $v{\in}V{\backslash}\{s,t\}$to free agent players, and this players transfer into the team that suggest more annual income. As a result of various networks, this algorithm can be finds all of min-cut sections and min-cut value for whole cases.

An Architecture of a Dynamic Cyber Attack Tree: Attributes Approach (능동적인 사이버 공격 트리 설계: 애트리뷰트 접근)

  • Eom, Jung-Ho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.3
    • /
    • pp.67-74
    • /
    • 2011
  • In this paper, we presented a dynamic cyber attack tree which can describe an attack scenario flexibly for an active cyber attack model could be detected complex and transformed attack method. An attack tree provides a formal and methodical route of describing the security safeguard on varying attacks against network system. The existent attack tree can describe attack scenario as using vertex, edge and composition. But an attack tree has the limitations to express complex and new attack due to the restriction of attack tree's attributes. We solved the limitations of the existent attack tree as adding an threat occurrence probability and 2 components of composition in the attributes. Firstly, we improved the flexibility to describe complex and transformed attack method, and reduced the ambiguity of attack sequence, as reinforcing composition. And we can identify the risk level of attack at each attack phase from child node to parent node as adding an threat occurrence probability.

Analysis of the Valuation Model for the state-of-the-art ICT Technology (첨단 ICT 기술에 대한 가치평가 모델 분석)

  • Oh, Sun-Jin
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.705-710
    • /
    • 2021
  • Nowadays, cutting-edge information communication technology is the genuine core technology of the fourth Industrial Revolution and is still making great progress rapidly among various technology fields. The biggest issue in ICT fields is the machine learning based Artificial Intelligence applications using big data in cloud computing environment on the basis of wireless network, and also the technology fields of autonomous control applications such as Autonomous Car or Mobile Robot. Since value of the high-tech ICT technology depends on the surrounded environmental factors and is very flexible, the precise technology valuation method is urgently needed in order to get successful technology transfer, transaction and commercialization. In this research, we analyze the characteristics of the high-tech ICT technology and the main factors in technology transfer or commercialization process, and propose the precise technology valuation method that reflects the characteristics of the ICT technology through phased analysis of the existing technology valuationmodel.

A Study on the Improvement of Availability of Distributed Processing Systems Using Edge Computing (엣지컴퓨팅을 활용한 분산처리 시스템의 가용성 향상에 관한 연구)

  • Lee, Kun-Woo;Kim, Young-Gon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.1
    • /
    • pp.83-88
    • /
    • 2022
  • Internet of Things (hereinafter referred to as IoT) related technologies are continuously developing in line with the recent development of information and communication technologies. IoT system sends and receives unique data through network based on various sensors. Data generated by IoT systems can be defined as big data in that they occur in real time, and that the amount is proportional to the amount of sensors installed. Until now, IoT systems have applied data storage, processing and computation through centralized processing methods. However, existing centralized processing servers can be under load due to bottlenecks if the deployment grows in size and a large amount of sensors are used. Therefore, in this paper, we propose a distributed processing system for applying a data importance-based algorithm aimed at the high availability of the system to efficiently handle real-time sensor data arising in IoT environments.

A Lightweight Pedestrian Intrusion Detection and Warning Method for Intelligent Traffic Security

  • Yan, Xinyun;He, Zhengran;Huang, Youxiang;Xu, Xiaohu;Wang, Jie;Zhou, Xiaofeng;Wang, Chishe;Lu, Zhiyi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.12
    • /
    • pp.3904-3922
    • /
    • 2022
  • As a research hotspot, pedestrian detection has a wide range of applications in the field of computer vision in recent years. However, current pedestrian detection methods have problems such as insufficient detection accuracy and large models that are not suitable for large-scale deployment. In view of these problems mentioned above, a lightweight pedestrian detection and early warning method using a new model called you only look once (Yolov5) is proposed in this paper, which utilizing advantages of Yolov5s model to achieve accurate and fast pedestrian recognition. In addition, this paper also optimizes the loss function of the batch normalization (BN) layer. After sparsification, pruning and fine-tuning, got a lot of optimization, the size of the model on the edge of the computing power is lower equipment can be deployed. Finally, from the experimental data presented in this paper, under the training of the road pedestrian dataset that we collected and processed independently, the Yolov5s model has certain advantages in terms of precision and other indicators compared with traditional single shot multiBox detector (SSD) model and fast region-convolutional neural network (Fast R-CNN) model. After pruning and lightweight, the size of training model is greatly reduced without a significant reduction in accuracy, and the final precision reaches 87%, while the model size is reduced to 7,723 KB.

A Worker-Driven Approach for Opening Detection by Integrating Computer Vision and Built-in Inertia Sensors on Embedded Devices

  • Anjum, Sharjeel;Sibtain, Muhammad;Khalid, Rabia;Khan, Muhammad;Lee, Doyeop;Park, Chansik
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.353-360
    • /
    • 2022
  • Due to the dense and complicated working environment, the construction industry is susceptible to many accidents. Worker's fall is a severe problem at the construction site, including falling into holes or openings because of the inadequate coverings as per the safety rules. During the construction or demolition of a building, openings and holes are formed in the floors and roofs. Many workers neglect to cover openings for ease of work while being aware of the risks of holes, openings, and gaps at heights. However, there are safety rules for worker safety; the holes and openings must be covered to prevent falls. The safety inspector typically examines it by visiting the construction site, which is time-consuming and requires safety manager efforts. Therefore, this study presented a worker-driven approach (the worker is involved in the reporting process) to facilitate safety managers by developing integrated computer vision and inertia sensors-based mobile applications to identify openings. The TensorFlow framework is used to design Convolutional Neural Network (CNN); the designed CNN is trained on a custom dataset for binary class openings and covered and deployed on an android smartphone. When an application captures an image, the device also extracts the accelerometer values to determine the inclination in parallel with the classification task of the device to predict the final output as floor (openings/ covered), wall (openings/covered), and roof (openings / covered). The proposed worker-driven approach will be extended with other case scenarios at the construction site.

  • PDF

QoS-Aware Optimal SNN Model Parameter Generation Method in Neuromorphic Environment (뉴로모픽 환경에서 QoS를 고려한 최적의 SNN 모델 파라미터 생성 기법)

  • Seoyeon Kim;Bongjae Kim;Jinman Jung
    • Smart Media Journal
    • /
    • v.12 no.4
    • /
    • pp.19-26
    • /
    • 2023
  • IoT edge services utilizing neuromorphic hardware architectures are suitable for autonomous IoT applications as they perform intelligent processing on the device itself. However, spiking neural networks applied to neuromorphic hardware are difficult for IoT developers to comprehend due to their complex structures and various hyper-parameters. In this paper, we propose a method for generating spiking neural network (SNN) models that satisfy user performance requirements while considering the constraints of neuromorphic hardware. Our proposed method utilizes previously trained models from pre-processed data to find optimal SNN model parameters from profiling data. Comparing our method to a naive search method, both methods satisfy user requirements, but our proposed method shows better performance in terms of runtime. Additionally, even if the constraints of new hardware are not clearly known, the proposed method can provide high scalability by utilizing the profiled data of the hardware.

Current State of Animation Industry and Technology Trends - Focusing on Artificial Intelligence and Real-Time Rendering (애니메이션 산업 현황과 기술 동향 - 인공지능과 실시간 렌더링 중심으로)

  • Jibong Jeon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.5
    • /
    • pp.821-830
    • /
    • 2023
  • The advancement of Internet network technology has triggered the emergence of new OTT video content platforms, increasing demand for content and altering consumption patterns. This trend is bringing positive changes to the South Korean animation industry, where diverse and high-quality animation content is becoming increasingly important. As investment in technology grows, video production technology continues to advance. Specifically, 3D animation and VFX production technologies are enabling effects that were previously unthinkable, offering detailed and realistic graphics. The Fourth Industrial Revolution is providing new opportunities for this technological growth. The rise of Artificial Intelligence (AI) is automating repetitive tasks, thereby enhancing production efficiency and enabling innovations that go beyond traditional production methods. Cutting-edge technologies like 3D animation and VFX are being continually researched and are expected to be more actively integrated into the production process. Digital technology is also expanding the creative horizons for artists. The future of AI and advanced technologies holds boundless potential, and there is growing anticipation for how these will elevate the video content industry to new heights.