In this study, a method is proposed for the cutting force prediction of Ball-end milling process using Z-map is proposed. Any types of cutting area generated from previous cutting process can be expressed in z-map data. Cutting edge of a ball-end mill is divided into a set of finite cutting edges and the position of this edge is projected to the cross-section plane normal to the Z-axis. Comparing this projected position with Z-map data of cutting area and determining whether it is in the cutting region, total cutting force can be calculated by means of numerical integration. A series of experiments such as side cutting and upward/downard cutting was performet to verify the simulated cutting force.
Shin, Won-Yong;Kabir, M. Humayun;Hoque, M. Robiul;Yang, Sung-Hyun
Journal of information and communication convergence engineering
/
제12권3호
/
pp.193-197
/
2014
Edges are a robust feature for object detection. In this paper, we present an edge-based background modeling method for the detection of moving objects. The edges in the image frames were mapped using robust Canny edge detector. Two edge maps were created and combined to calculate the ultimate moving-edge map. By selecting all the edge pixels of the current frame above the defined threshold of the ultimate moving edges, a temporary background-edge map was created. If the frequencies of the temporary background edge pixels for several frames were above the threshold, then those edge pixels were treated as background edge pixels. We conducted a performance comparison with previous works. The existing edge-based moving-object detection algorithms pose some difficulty due to the changes in background motion, object shape, illumination variation, and noises. The result of the performance evaluation shows that the proposed algorithm can detect moving objects efficiently in real-world scenarios.
본 논문에서는 영상 블록내의 에지 맵을 이용한 새로운 인트라 필드 디인터레이싱 알고리듬을 제안한다. 기존의 방향성 기반 라인 평균 방식들은 화소단위 상관도를 이용하기 때문에 화소값의 변화에 민감하다는 단점을 가지고 있다. 또 방향성 에지를 탐색할 때 탐색 영역 내에 에지들이 다수 존재할 경우 부적절한 에지 방향을 찾게 되고 이는 화질의 열화를 가져온다는 단점이 있다. 이러한 단점을 극복하기 위해 본 논문은 에지 맵에 의해 계산되는 에지 방향 벡터와 이 벡터가 이용된 보간방식을 제안한다. 먼저 소벨 마스크를 이용하여 에지 방향 벡터를 구한 후, 구해진 에지방향 벡터를 이용해 다섯 개의 에지 방향 벡터의 가중치 값을 구한다. 구해진 값들은 이후에 여러 에지방향으로부터 구해지는 보간값들과 중해짐으로써 최종 보간값을 예측하게 된다. 본 논문의 핵심 아이디어는 에지 검출기를 통해 구해진 하나의 에지 방향 정보만으로 보간작업을 수행하지 않고 사용 가능한 모든 에지방향의 정보로부터 구해지는 결과값들에 가중치를 곱하여 보간작업을 수행하는 방식이다.
The stereoscopic vision system is the algorithm to obtain the depth of target object of stereo vision image. This paper presents an efficient disparity matching method using blue edge filter and graph cut algorithm. We do recommend the use of the simple sobel edge operator. The application of B band sobel edge operator over image demonstrates result with somewhat noisy (distinct border). The basic technique is to construct a specialized graph for the energy function to be minimized such that the minimum cut on the graph also minimizes the energy (either globally or locally). This method has the advantage of saving a lot of data. We propose a preprocessing effective stereo matching method based on sobel algorithm which uses blue edge information and the graph cut, we could obtain effective depth map.
This paper addresses a problem of defocus map recovery from single image. We describe a simple effective approach to estimate the spatial value of defocus blur at the edge location of the image. At first, we perform a re-blurring process using Gaussian function with input image, and calculate a gradient magnitude ratio with blurring amount between input image and re-blurred image. Then we get a full defocus map by propagating the blur amount at the edge location. Experimental result reveals that our method outperforms a reliable estimation of depth map, and shows that our algorithm is robust to noise, inaccurate edge location and interferences of neighboring edges within input image.
본 논문은 다중 도메인 학습을 이용하여 화면 촬영 영상 내 모아레 무늬를 효과적으로 제거하는 기법을 제안한다. 제안하는 기법은 먼저 화소값 영역과 주파수 영역에서 입력 영상의 모아레 무늬를 각각 제거한다. 다음으로 모아레 영상에서 clean edge map을 추정하고, 추정된 clean edge map을 가이드 정보로 사용하여 화소값 영역과 주파수 영역에서 얻은 결과 영상의 품질을 향상시킨다. 마지막으로, 독립적으로 향상된 두 결과 영상을 적응적으로 결합하며 모아레 무늬가 제거된 최종 결과 영상을 생성한다. 컴퓨터 모의 실험결과를 통해 제안하는 기법이 기존의 알고리즘보다 모아레 무늬를 더욱 효과적으로 제거할 수 있음을 확인한다.
In this paper, we propose an edge detection scheme for noisy images based on the co-occurrence matrix. In the proposed scheme based on the step edge model, the gray level information is simply converted into a bit-map, i.e., the uniform and boundary regions of an image are transformed into a binary pattern by using the local mean. In this binary bit-map pattern, 0 and 1 densely distributed near the boundary region while they are randomly distributed in the uniform region. To detect the boundary region, the co-occurrence matrix on the bit-map is introduced. The effectiveness of the proposed scheme is shown via a quantitative performance comparison to the conventional edge detection methods and the simulation results for noisy images are also presented.
Monte Carlo localization is known to be one of the most reliable methods for pose estimation of a mobile robot. Although MCL is capable of estimating the robot pose even for a completely unknown initial pose in the known environment, it takes considerable time to give an initial pose estimate because the number of random samples is usually very large especially for a large-scale environment. For practical implementation of MCL, therefore, a reduction in sample size is desirable. This paper presents a novel approach to reducing the number of samples used in the particle filter for efficient implementation of MCL. To this end, the topological information generated through the thinning technique, which is commonly used in image processing, is employed. The global topological map is first created from the given grid map for the environment. The robot then scans the local environment using a laser rangefinder and generates a local topological map. The robot then navigates only on this local topological edge, which is likely to be similar to the one obtained off-line from the given grid map. Random samples are drawn near the topological edge instead of being taken with uniform distribution all over the environment, since the robot traverses along the edge. Experimental results using the proposed method show that the number of samples can be reduced considerably, and the time required for robot pose estimation can also be substantially decreased without adverse effects on the performance of MCL.
본 논문에서는 영상의 관심 영역을 선택추출하여 효과적으로 객체를 추출 할 수 있는 관심 영역 지도(Saliency Map) 생성 기법을 제안하였다. 제안하는 방법은 객체의 윤곽선에 초점을 맞추어 단일영상의 에지(Edge), HSV 색상 모델의 H(Hue)성분, 포커스(Focus), 엔트로피(Entropy)의 네 가지 특징 정보를 이용한 각각의 특징 지도(Feature Map)를 생성하고, 생성된 특징 지도들을 중심 주변 차이(Center Surround Differences)를 이용하여 중요도 지도(conspicuity map)를 생성하게 된다. 이후 생성된 중요도 지도들을 조합함으로써 관심 영역 지도를 생성하게 된다. 제안한 기법을 이용하여 생성한 관심 영역 지도를 기존 기법의 관심 영역 지도와 비교한 결과 제안한 기법의 우수함을 알 수 있었다.
This paper proposes the efficient preprocessing method based on curvelet transform for edge enhancement in image. The propose method is generated the edge map by using the Canny algorithm to wavelet transform, which is the sub-step of the curvelet transform. In order to improve the part of edge feature, the selective sharpening according to the generate edge map is applied. In experimental result, the propose method achieves that the enhancement of edge feature is better than conventional methods. This leads that peak to signal noise ratio, edge intensity are improvement on average about 1.92, 1.12dB respectively.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.