• Title/Summary/Keyword: Edge Machining

Search Result 206, Processing Time 0.025 seconds

Evaluation of Machinability by Cutting Environments in High-Speed Machining of Difficult-to-cut Materials(Test for Tool Life Using Compressed Chilly Air Cooling) (난삭성 재료의 가공환경변화에 따른 고속가공 특성 평가(압축공기냉각에 의한 공구수명 평가))

  • 김석원;안철수;이득우
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.6
    • /
    • pp.158-163
    • /
    • 2000
  • High speed machining of difficult-to-cut materials generates the concentrated thermal/frictional damage at the cutting edge of the tool and rapidly decreases the tool life. In this paper, the cutting environments, such as dry, fluid coolant, and compressed chilly air coolant, were investigated to improve the tool life. For this study, the compressed chilly air system was manufactured. The experiments were performed for various difficult-to-cut materials and various coated tools. The effectiveness of the developed methods on the basis of tool life was estimated. The results show that the cutting environment using compressed chilly air coolant provided better tool life than using the fluid coolant or using the dry.

  • PDF

Development of Edge Milling Automation System for PSPC Application (PSPC 적용을 위한 모서리 밀링 자동화 시스템 개발)

  • Ryu, Hyun-Su;Park, Il-Hwan;Ko, Dae-Eun;Kim, Ho-Kyeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.122-130
    • /
    • 2018
  • The International Maritime Organization has enacted mandatory performance standards for protective coatings (PSPC), and as a result, shipyards must perform 2R or 3-pass milling on the edges of color plates. However, manual milling could result in many problems in terms of work environment and productivity. Therefore, it is necessary to develop an edge milling automation system that can satisfy the regulations. In this study, a basic design for an edge milling automation system was developed for standard color plates, and the machining process was established by applying shape recognition and a machining path generation algorithm. In addition, operating software was developed, and suitable milling conditions were derived based on the results of a milling test. The results could be used to build an automation system that meets the PSPC requirements and improve productivity.

Machinability of ceramic and WC-Co green compacts (세라믹 및 초경합금 성형체의 피절삭성)

  • Lee, Jae-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.9
    • /
    • pp.1520-1530
    • /
    • 1997
  • Machining pressed compacts of ceramic and WC-Co materials can be the most cost effective way of forming the bodies prior to sintering when the required number of pieces is small. In this study, in order to clarify the machinability for turning, the $Si_3N_4$ and the WC-Co green compacts unsintered were machined under different cutting conditions with various tools. Absorbing chips by vacuum hose decreases tool wear. The tool wear becomes larger in the order of the ceramic, CBN and cemented carbide tools in machining the $Si_3N_4$ green compacts. In machining the WC-Co green compacts, the tool wear becomes larger in the order of the ceramic, cemented carbide and CBN tools. The land of cutting edge does not affect tool wear. When machining with cemented carbide tool, the tool wear i equal cutting length is nearly identical in spite of the increase of cutting spee, and the roughness of machined surface was the best in the cutting speed of 90 m/min. The tool wear decreases with the increase of rake angle and relief angle and with the decrease of nose radius. The machined surfaces become worse with the increase of feed rate and depth of cut, and with the decrease of rake angle and relief angle. The tool wear is not affected by the feed and depth of cut.

The Characteristics of Ultra Precision Machining of Si and Ge (Si와 Ge의 초정밀 절삭특성)

  • 원종호;박상진;안병민;도철진;홍권희;김건희;유병주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.775-778
    • /
    • 2000
  • Single point diamond turning technique fur optical crystals is reported in this paper. The main factors influencing the machined surface quality are discovered and regularities of machining process are drawn. Optical crystals have found more and more important applications in the field of modern optics. Optical crystals are mostly brittle materials of poor machinability. The traditional machining method is polishing which has many shortcomings such as low production efficiency, poor ability to be automatically controlled and edge effect of the workpiece. SPDT has been widely used in manufacturing optical reflectors of non-ferrous metals such as aluminum and copper which are easy to be machined for their proper ductility. But optical crystals being discussed here are characterized by their high brittleness which makes it difficult to obtain high quality optical surfaces on them. The purpose of cur research is to find the optimum machining conditions for ductile cutting of optical crystals and apply the SPDT technique to the manufacturing of ultra precision optical components of brittle materials. As a result, the cutting force is steady, the cutting force range is 0.05-0.08N. The surface roughness is good when spindle is above 1400rpm. and feed rate is small. The influence of depth of cut is very small.

  • PDF

Electrochemical Deburring System by the Electroplated CBN Wheel (입방정질화붕소입자 전착지석에 의한 전해디버링 시스템)

  • 최인규;김정두
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.19-23
    • /
    • 1996
  • Deburring and edge finishing technology as the last process of machining operation is required for manufacturing of advanced procesion components, duburring has treated as a difficult problem on going tothe highefficency, automation in the FMS. Removal of butt with various shapes, dimensions and properties coultn't has a standard and has depended on manual treatment. Especially, deburring for cross hole inside owing to passing through out perpendicular to a main hole is more difficult, the electrolytic method is proper as its solution at practical aspects. Therefore, for the high effciency and automation of intermal deburring in the cross hole, development of electrolytic debutting technology is needed. So, the new process in the burr treatment is supposed. In this study, in the eliminating burr inside cross hole, the principle and machining performances of electrochemical deburring by Cubic-Boron-Nitrade abrasive electroplate wheel are investigated, Design and manufacture of CBN electroplated wheel and analysis of characteristics with electrolytic debutting are achieved. Also deburring efficiency and electrolytic performance for cross hole were examined according to electrolytic current and electrolytic deburring condition corresponding to acquired edge quality was found out.

  • PDF

Effect on Axial Rake Angle of Cutting Edge for Machinable Ceramics (절삭 선단의 축 방향 경사각이 가공성 세라믹에 미치는 영향)

  • Jang, Sung-Min;Yun, Yeo-Kwon
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.2
    • /
    • pp.7-12
    • /
    • 2009
  • The machining process of ceramics can be characterized by cracking and brittle fracture. In the machining of ceramics, edge chipping and crack propagation are the principal reasons to cause surface integrity deterioration. Such phenomenon can cause not only poor dimensional and geometric accuracy, but also possible failure of the ceramic parts. Thus, traditional ceramics are very difficult-to-cut materials. Generally, ceramics are machined using conventional method such as grinding and polishing. However these processes are generally costly and have low MRR(material removal rate). To overcome such problems, in this paper, h-BN powder, which gives good cutting property, is added for the fabrication of machinable ceramics by volume of 10 and 15%. The purpose of this study is an analysis of endmill's rake angle for appropriate tools design and manufacturing for the machinable ceramics. In this study, Experimental works are executed to measure cutting force, surface roughness, tool fracture, on different axial rake angle of endmills. Cutting parameters, namely, feed, cutting speed and depth of cut are used to accomplish purpose of this paper. Required experiments are performed, and the results are investigated.

A Study on Exit Burr Formation in Face Milling (페이스 밀링 가공시 출구버 형성에 관한 연구)

  • Han, Sang-Woo;Ko, Sung-Lim
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.8
    • /
    • pp.55-62
    • /
    • 2002
  • A burr has been defined as undesirable projection of material formed as the result of plastic flow from a cutting or shearing operation. It is unavoidable in all kinds of machining operation. As a result, burr makes troubles on manufacturing process due to deburring cost, quality of products and productivity. In face milling operation, burrs are formed along five edges on the workpiece. In this study, the primary interest is about exit burr The influence of the cutting parameters on the formation of exit burrs in face milling will be described experimentally. Using the results of experimental study, burr types are classified according to appearance and formation mechanism in exit burr. The burr formation mechanism in each type of burr is suggested. Data bases are developed to predict burr formation result.

A Study on the Characteristics of Deep Hole Drilling Process Using Single Edge Drill with Small Diameters (미소직경의 Single Edge형 드릴을 사용한 심공드릴링 공정의 가공특성에 관한 연구)

  • 최성주;이우영;박원규
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.2
    • /
    • pp.1-8
    • /
    • 2004
  • Applications of the deep hole drilling process can be found in many industries ranging from large aerospace manufacturer to small tool and die shop. Deep hole drilling process with small diameter generally requires high quality and accuracy. But problems which may arise or result from the deep hole drilling process include drill breakage, the generation of a finished part surface which does not satisfy required quality, and process instability. To guaranty the required machining quality and accuracy, it is important to understand and improve the deep hole drilling process. In this study, deep hole drilling experiments using tingle edge drill with small diameter under 2mm have been carried out for difficult to cut materials such as C42CrMo4 and C45pb and the experimental results were analyzed. Feed force and torque versus feed showed linear relationship in both materials. The feed force and torque are decreased as cutting speed is increased but the trends are not uniform in C42CrMo4.

Analysis of Cutting Edge Geometry Effect on Surface Roughness in Ball-end Milling Using the Taguchi Method (다구찌 방법을 통한 볼 엔드밀 절삭날 형상이 가공면 거칠기에 미치는 영향 분석)

  • Cho, Chul Yong;Ryu, Shi Hyoung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.6
    • /
    • pp.569-575
    • /
    • 2014
  • In this study, the effect of cutting edge geometry, such as helix and rake angles, on surface roughness in ball-end milling is investigated by using the Taguchi method. A set of experiments adopting the $L_{27}(3^{13})$ design with an orthogonal array are conducted with special WC ball-end mills having different helix and rake angles. Analysis of variance (ANOVA) is performed to analyze the effects of tool geometry and machining parameters, such as cutting speed, feed per tooth, and depth of cut, on surface roughness. The ANOVA results reveal that helix and rake angles are critical factors affecting surface roughness; the interaction of helix angle and cutting speed is also important. This research can contribute to novel cutting edge designs of ball-end mills and optimization of cutting parameters.