• Title/Summary/Keyword: Edge Machining

Search Result 206, Processing Time 0.023 seconds

The Effect of Machining Parameters on Tool Electrode Edge Wear and Machining Performance in Electric Discharge Machining (EDM)

  • Cogun, Can;Akaslan, S.
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.46-59
    • /
    • 2002
  • The main purpose of this study is to investigate the variation of tool electrode edge wear and machining performance outputs, namely, the machining rate (workpiece removal rate), tool wear rate and the relative wear, with the varying machining parameters (pulse time, discharge current and dielectric flushing pressure) in EDM die sinking. The edge wear profiles obtained are modeled by using the circular arcs, exponential and poller functions. The variation of radii of the circular arcs with machining parameters is given. It is observed that the exponential function models the edge wear profiles of the electrodes, very accurately. The variation of exponential model parameters with machining parameters is presented.

Machinability evaluation according to variation of tool shape in high speed machining (고속가공에서 공구형상 변화에 따른 가공성평가)

  • 하동근;강명창;김정석;김광호;강호연
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.346-351
    • /
    • 2001
  • The technique of high speed machining is widely studied in machining field. Because the high efficiency and accuracy in machining can be obtained in high speed machining. Unfortunately the development of tool for high speed machining is not close behind that of machining tool. So in this study, we made 4 types flat end mill for obtaining data according to tool shape. Especially, we concentrated in helix angle and number of cutting edge. First we confirmed cutting condition by several experiments and measuring cutting force, tool life, tool wear and chip shape according to cutting length. In results, we acquired the fact that 45 degree helix angle and six cutting edge tool is suitable for high speed machining.

  • PDF

A Study on Tool Path Generation for Machining Impellers with 5-Axis Machining Center (5축 Machining Center를 이용한 임펠러 가공을 위한 공구경로 생성에 관한 연구)

  • 장동규;조환영;이희관;공영식;양균의
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.3
    • /
    • pp.83-90
    • /
    • 2004
  • This paper proposes a tool path generation method for machining impellers with 5-axis machining center. The shape of impeller is complex, being composed of pressure surface, suction surface and leading edge, and so on. The compound surface which is made of ruled surface such as pressure surface and suction surface and leading edge such as fillet surface, makes the tool path generation much complicated. To achieve efficient roughing, cutting area is divided into two region and then tool radius of maximum size that do not cause tool intereference is selected for shortening machining time. In finishing, accuracy is improved using side cutting for blade surface and point milling for leading edge.

Analysis of Contact Tractions influenced by Edge Machining (모서리가공에 따른 접촉응력 해석)

  • Kim, Hyung-Kyu;Kang, Heung-Seok;Yoon, Kyung-Ho;Song, Kee-Nam
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.389-395
    • /
    • 2001
  • To restrain contact failure, present study investigates the influence of edge machining of an indenter (punch). As for the edge machining, rounding, chamfering, and chamfering and rounding are considered. Contact mechanics is consulted to examine the traction profile and the size of the contact region which are directly influenced by the end profile of the indenter. The effect of rounding size (i.e., radius) in the case of the chamfering and rounding edge-indenter is studied. Shear traction is also evaluated within the regime of partial slip. Size of slip region and its expansion rate due to the increase of shear force are considered to investigate the shape effect of the indenter on contact failure.

  • PDF

A Study on Free Surface Cutting Force System of Conical Tipped Circular Cutting Edge Ball End Mill (圓錐팁 Ball End Mill 의 3次元 曲面切削力系에 관한 硏究)

  • 박천향;맹희구
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.4
    • /
    • pp.440-451
    • /
    • 1985
  • This study is concerned with the analysis of cutting force system acting on ball-nose end mill in three-dimensional surface machining process. Conical tipped circular cutting edge element model and free surface machining process types are proposed to apply oblique cutting theory, and then derived equations are used for numerical approach of cutting force curves by matrix method. This approach has a good agreement with experimental results both in magnitude and shape within the range of 15 percent, which was conformed on 6061-T6 aluminum workpiece having twofold curvatured surface. From the cutting load variation to edge location, it is confirmed that circular cutting edge shapes has a better cutting ability than that of straight and both have a singularity near a tool point. It is also verified that what kind of machining condition is recommendable for three-dimensional machining process in connection with deflection of the cutter to workpiece and tool point wearing or system stability.

Machinability evaluation according to variation of tool shape in high speed machining (고속가공용 엔드밀공구의 형상변화에 의한 성능평가)

  • 강명창;김정석;이득우;김광호;하동근
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.393-398
    • /
    • 2001
  • The technique of high speed machining is widely studied in machining fields, because the high efficiency and accuracy in machining can be obtained in high speed machining. Unfortunately the development of tool for high speed machining in not close behind that of machine tool. In this study, several types flat endmill is prepared for obtaining data according to tool shape. Especially, we concentrated in helix angle, number of cutting edge, rake angle and relief angle. Machinability is measured by cutting force, tool life, tool wear, chip shape and surface roughness according to cutting length. 3-axis cutting forces are acquired from the invented tool dynamometer for high speed machining. Particularly, we found out that the axial cutting force waveform has a good relation with tool wear features. By above results, it is suggested the endmill tool with $45^{\circ}$ helix angle, 6 cutting edge, $-15^{\circ}$ rake angle and $12^{\circ}$ relief angle be suitable for high speed machining

  • PDF

A Finite Element Analysis for the Characteristics of Temperature and Stress in Micro-machining Considering the Size Effect (크기효과가 고려된 미소절삭시의 온도 및 응력특성에 관한 유한요소해석)

  • 김국원;이우영
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.10
    • /
    • pp.128-139
    • /
    • 1998
  • In this paper, a finite element method for predicting the temperature and stress distributions in micro-machining is presented. The work material is oxygen-free-high-conductivity copper(OFHC copper) and its flow stress is taken as a function of strain, strain rate and temperature in order to reflect realistic behavior in machining process. From the simulation, a lot of information on the micro-machining process can be obtained; cutting force, cutting temperature, chip shape, distributions of temperature and stress, etc. The calculated cutting force was found to agree with the experiment result with the consideration of friction characteristics on chip-tool contact region. Because of considering the tool edge radius, this cutting model using the finite element method can analyze the micro-machining with the very small depth of cut, almost the same size of tool edge radius, and can observe the 'size effect' characteristic. Also the effects of temperature and friction on micro-machining were investigated.

  • PDF

A Finite Element Analysis of the Stagnation Point on the Tool Edge (공구끝단에서의 정체점에 관한 유한요소해석)

    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.901-904
    • /
    • 2002
  • The cutting thickness of ultra-precision machining is generally very small, only a few micrometer or even down to the order of a flew manometer. In such case, a basic understanding of the mechanism on the micro-machining process is necessary to produce a high quality surface. When machining at very small depths of cut, metal flow near a rounded tool edge become important. In this paper a finite element analysis is presented to calculate the stagnation point on the tool edge or critical depth of cut below which no cutting occurs. From the simulation, the effects of the cutting speed on the critical depths of cut were calculated and discussed. Also the transition of the stagnation point according to the increase of the depths of cut was observed.

  • PDF

A Study on Critical Cutting Depth in Micro-Machining (마이크로 가공에서의 한계절삭깊이에 관한 연구)

  • 손성민;이희석;안중환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.980-983
    • /
    • 2002
  • In micro-machining, diamond tool is commonly used because it brings much better micro-machinability due to its edge sharpness. However, it is a big question even how thinly the sharp edge of a diamond tool can cut a ship from the workpiece surface. This paper is to investigate the critical cutting depth, at which the dominant cutting mode changes from chip formation to burnishing or vice versa, for a given edge radius. The theoretically critical cutting depth is 0.25$\mu\textrm{m}$(0.8$\mu\textrm{m}$) in cutting using a square type(V-type) diamond tool that has edge radius of 1$\mu\textrm{m}$(1.5$\mu\textrm{m}$). Experimentally, the dominant cutting mode changes and cutting surface becomes better at critical cutting depth. To get high quality surface, depth of cut must be critical cutting depth because less plastically deformed substrate is left on the surface.

  • PDF

Research on ultra-precision fine-pattern machining through single crystal diamond tool fabrication technology (단결정 다이아몬드공구 제작 기술을 통한 초정밀 미세패턴 가공 연구)

  • Jung, Sung-Taek;Song, Ki-Hyeong;Choi, Young-Jae;Baek, Seung-Yub
    • Design & Manufacturing
    • /
    • v.14 no.3
    • /
    • pp.63-70
    • /
    • 2020
  • As the consumer market in the VR(virtual reality) and the head-up display industry grows, the demand for 5-axis machines and grooving machines using on a ultra-precision machining increasing. In this paper, ultra-precision diamond tools satisfying the cutting edge width of 500 nm were developed through the process research of a focused ion beam. The material used in the experiment was a single-crystal diamond tool (SCD), and the equipment for machining the SCD used a focused ion beam. In order to reduce the influence of the Gaussian beam emitted from the focused ion beam, the lift-off process technology used in the semiconductor process was used. 2.9 ㎛ of Pt was coated on the surface of the diamond tool. The sub-micron tool with a cutting edge of 492.19 nm was manufactured through focused ion beam machining technology. Toshiba ULG-100C(H3) equipment was used to process fine-pattern using the manufactured ultra-precision diamond tool. The ultra-precision machining experiment was conducted according to the machining direction, and fine burrs were generated in the pattern in the forward direction. However, no burr occurred during reverse machining. The width of the processed pattern was 480 nm and the price of the pitch was confirmed to be 1 ㎛ As a result of machining.