• Title/Summary/Keyword: Edge Distance

Search Result 686, Processing Time 0.032 seconds

Shear Strength of Single Anchors in Uncracked and Unreinforced Concrete (비균열·무근콘크리트의 단일앵커 전단내력 평가)

  • Kim, Sung-Yong;Kim, Kyu-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.4
    • /
    • pp.171-181
    • /
    • 2003
  • This study concerns the prediction of shear capacity, as governed by concrete breakout failure, concrete pryout failure and steel failure, of single anchors located close to free edge and located far from a free edge and installed in uncracked, unreinforced concrete. For this purpose, the methods to evaluate the shear capacity of the single anchors in concrete are summarized and the experimental data are compared with capacities by the two present methods: the method of ACI 349-90 and concrete capacity design (CCD) method.

Deep Reinforcement Learning-Based Edge Caching in Heterogeneous Networks

  • Yoonjeong, Choi; Yujin, Lim
    • Journal of Information Processing Systems
    • /
    • v.18 no.6
    • /
    • pp.803-812
    • /
    • 2022
  • With the increasing number of mobile device users worldwide, utilizing mobile edge computing (MEC) devices close to users for content caching can reduce transmission latency than receiving content from a server or cloud. However, because MEC has limited storage capacity, it is necessary to determine the content types and sizes to be cached. In this study, we investigate a caching strategy that increases the hit ratio from small base stations (SBSs) for mobile users in a heterogeneous network consisting of one macro base station (MBS) and multiple SBSs. If there are several SBSs that users can access, the hit ratio can be improved by reducing duplicate content and increasing the diversity of content in SBSs. We propose a Deep Q-Network (DQN)-based caching strategy that considers time-varying content popularity and content redundancy in multiple SBSs. Content is stored in the SBS in a divided form using maximum distance separable (MDS) codes to enhance the diversity of the content. Experiments in various environments show that the proposed caching strategy outperforms the other methods in terms of hit ratio.

Semantic Similarity Measures Between Words within a Document using WordNet (워드넷을 이용한 문서내에서 단어 사이의 의미적 유사도 측정)

  • Kang, SeokHoon;Park, JongMin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7718-7728
    • /
    • 2015
  • Semantic similarity between words can be applied in many fields including computational linguistics, artificial intelligence, and information retrieval. In this paper, we present weighted method for measuring a semantic similarity between words in a document. This method uses edge distance and depth of WordNet. The method calculates a semantic similarity between words on the basis of document information. Document information uses word term frequencies(TF) and word concept frequencies(CF). Each word weight value is calculated by TF and CF in the document. The method includes the edge distance between words, the depth of subsumer, and the word weight in the document. We compared out scheme with the other method by experiments. As the result, the proposed method outperforms other similarity measures. In the document, the word weight value is calculated by the proposed method. Other methods which based simple shortest distance or depth had difficult to represent the information or merge informations. This paper considered shortest distance, depth and information of words in the document, and also improved the performance.

Mesh Simplification Algorithm Using Differential Error Metric (미분 오차 척도를 이용한 메쉬 간략화 알고리즘)

  • 김수균;김선정;김창헌
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.5_6
    • /
    • pp.288-296
    • /
    • 2004
  • This paper proposes a new mesh simplification algorithm using differential error metric. Many simplification algorithms make use of a distance error metric, but it is hard to measure an accurate geometric error for the high-curvature region even though it has a small distance error measured in distance error metric. This paper proposes a new differential error metric that results in unifying a distance metric and its first and second order differentials, which become tangent vector and curvature metric. Since discrete surfaces may be considered as piecewise linear approximation of unknown smooth surfaces, theses differentials can be estimated and we can construct new concept of differential error metric for discrete surfaces with them. For our simplification algorithm based on iterative edge collapses, this differential error metric can assign the new vertex position maintaining the geometry of an original appearance. In this paper, we clearly show that our simplified results have better quality and smaller geometry error than others.

Integrating Color, Texture and Edge Features for Content-Based Image Retrieval (내용기반 이미지 검색을 위한 색상, 텍스쳐, 에지 기능의 통합)

  • Ma Ming;Park Dong-Won
    • Science of Emotion and Sensibility
    • /
    • v.7 no.4
    • /
    • pp.57-65
    • /
    • 2004
  • In this paper, we present a hybrid approach which incorporates color, texture and shape in content-based image retrieval. Colors in each image are clustered into a small number of representative colors. The feature descriptor consists of the representative colors and their percentages in the image. A similarity measure similar to the cumulative color histogram distance measure is defined for this descriptor. The co-occurrence matrix as a statistical method is used for texture analysis. An optimal set of five statistical functions are extracted from the co-occurrence matrix of each image, in order to render the feature vector for eachimage maximally informative. The edge information captured within edge histograms is extracted after a pre-processing phase that performs color transformation, quantization, and filtering. The features where thus extracted and stored within feature vectors and were later compared with an intersection-based method. The content-based retrieval system is tested to be effective in terms of retrieval and scalability through experimental results and precision-recall analysis.

  • PDF

Bolted connectors with mechanical coupler embedded in concrete: Shear resistance under static load

  • Milicevic, Ivan;Milosavljevic, Branko;Pavlovic, Marko;Spremic, Milan
    • Steel and Composite Structures
    • /
    • v.36 no.3
    • /
    • pp.321-337
    • /
    • 2020
  • Contemporary design and construction of steel-concrete composite structures employs the use of prefabricated concrete elements and demountable shear connectors in order to reduce the construction time and costs and enable dismantling of elements for their potential reuse at the end of life of buildings. Bolted shear connector with mechanical coupler is presented in this paper. The connector is assembled from mechanical coupler and rebar anchor, embedded in concrete, and steel bolt, used for connecting steel to concrete members. The behaviour and ultimate resistance of bolted connector with mechanical coupler in wide and narrow members were analysed based on push-out tests and FE analyses conducted in Abaqus software, with focus on concrete edge breakout and bolt shear failure modes. The effect of concrete strength, concrete edge distance and diameter and strength of bolts on failure modes and shear resistance was analysed. It was demonstrated that premature failure by breakout of concrete edge occurs when connectors are located 100 mm or closer from the edge in low-strength and normal-strength reinforced concrete. Furthermore, the paper presents a relatively simple model for hand calculation of concrete edge breakout resistance when bolted connectors with mechanical coupler are used. The model is based on the modification of prediction model used for cast-in and post-installed anchors loaded parallel to the edge, by implementing equivalent influence length of connector with variable diameter. Good agreement with test and FE results was obtained, thus confirming the validity of the proposed method.

Edge Vegetation Structure in the Chirisan National Park (지리산 국립공원의 주연부 식생구조)

  • 오구균;권태호;이규완
    • Korean Journal of Environment and Ecology
    • /
    • v.5 no.1
    • /
    • pp.68-78
    • /
    • 1991
  • To investigate edge vegetation structure and species in the Chrisan National Park, filed survey was excuted from August to October, 1991 and the results were as follows. Importance values of species in lower layer were changed according to the distance from edge to forest interior at the northeastern slope of a highland. Change of vegetation structure was observed from edge up to 30m of forest interior and edge depth was estimated as 15~20m. The dominance and frequency of edge species seemed to be affected by the factors of altitude, aspect and topographic location. Especially, edge vegetation showed severe difference according to topographic location between a ridge and a foot of a mountain, and according to aspect between southern and northern slope above midslope region of a mountain. Comparing vegetation structure of lower layer for southern and northern slope, more no. of individuals and crown coverage were observed at northern slope, while more no. of species, species diversity and coverage of Sasa purpurascen at southern slope.

  • PDF

Extraction of Optimal Moving Patterns of Edge Devices Using Frequencies and Weights (빈발도와 가중치를 적용한 엣지 디바이스의 최적 이동패턴 추출)

  • Lee, YonSik;Jang, MinSeok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.5
    • /
    • pp.786-792
    • /
    • 2022
  • In the cloud computing environment, there has been a lot of research into the Fog/Edge Computing (FEC) paradigm for securing user proximity of application services and computation offloading to alleviate service delay difficulties. The method of predicting dynamic location change patterns of edge devices (moving objects) requesting application services is critical in this FEC environment for efficient computing resource distribution and deployment. This paper proposes an optimal moving pattern extraction algorithm in which variable weights (distance, time, congestion) are applied to selected paths in addition to a support factor threshold for frequency patterns (moving objects) of edge devices. The proposed algorithm is compared to the OPE_freq [8] algorithm, which just applies frequency, as well as the A* and Dijkstra algorithms, and it can be shown that the execution time and number of nodes accessed are reduced, and a more accurate path is extracted through experiments.

Uplift capacity of horizontal anchor plate embedded near to the cohesionless slope by limit analysis

  • Bhattacharya, Paramita;Sahoo, Sagarika
    • Geomechanics and Engineering
    • /
    • v.13 no.4
    • /
    • pp.701-714
    • /
    • 2017
  • The effect of nearby cohesionless sloping ground on the uplift capacity of horizontal strip plate anchor embedded in sand deposit with horizontal ground surface has been studied numerically. The numerical analysis has been carried out by using the lower bound theorem of limit analysis with finite elements and linear optimization. The results have been presented in the form of non-dimensional uplift capacity factor of anchor plate by changing its distance from the slope crest for different slope angles, embedment ratios and angles of soil internal friction. It has been found that the decrease in horizontal distance between the edge of the anchor plate and the slope crest causes a continuous decrease in uplift capacity of anchor plate. The optimum distance is that distance between slope crest and anchor plate below which uplift capacity of an anchor plate has been found to decrease with a decrease in normalized crest distance from the anchor plate in presence of nearby sloping ground. The normalized optimum distance between the slope crest and the anchor plate has been found to increase with an increase in slope angle, embedment ratio and soil internal friction angle.

Content-Based Video Retrieval Algorithms using Spatio-Temporal Information about Moving Objects (객체의 시공간적 움직임 정보를 이용한 내용 기반 비디오 검색 알고리즘)

  • Jeong, Jong-Myeon;Moon, Young-Shik
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.9
    • /
    • pp.631-644
    • /
    • 2002
  • In this paper efficient algorithms for content-based video retrieval using motion information are proposed, including temporal scale-invariant retrieval and temporal scale-absolute retrieval. In temporal scale-invariant video retrieval, the distance transformation is performed on each trail image in database. Then, from a given que교 trail the pixel values along the query trail are added in each distance image to compute the average distance between the trails of query image and database image, since the intensity of each pixel in distance image represents the distance from that pixel to the nearest edge pixel. For temporal scale-absolute retrieval, a new coding scheme referred to as Motion Retrieval Code is proposed. This code is designed to represent object motions in the human visual sense so that the retrieval performance can be improved. The proposed coding scheme can also achieve a fast matching, since the similarity between two motion vectors can be computed by simple bit operations. The efficiencies of the proposed methods are shown by experimental results.