• 제목/요약/키워드: Edge Crack

검색결과 340건 처리시간 0.024초

분자동력학을 이용한 공구형상에 따른 미소절삭현상에 관한 연구 (A Study on the Microcutting for Configuration of Tools using Molecular Dynamics)

  • 뮨찬홍;김정두
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1993년도 추계학술대회 논문집
    • /
    • pp.83-88
    • /
    • 1993
  • Recently, the analysis of microcutting with submicrometer depth of cut is tried to get a more high quality surface product, but to get a valuable result another method instead of conventional finite element method must be considered because finite elment method is impossible for a very small focused region and mesh size. As the altermative method, Molecular Dynamics or Statics is suggested and acceoted in the field of microcutting, indentation and crack propagation. In this paper using Molecuar Dynamics simulation, the phenomena of microcutting with subnanometer chip thickness is studied and the cutting mechanism for tool edge configuration is evaluated. As the result of simulation the atomistic chip formation is achieved.

  • PDF

2차원 선형 탄성 이방성 재료에서 $J_k$-적분을 이용한 응력확대계수 계산 (Calculation of Stress Intensity Factor in 2-D Using $J_k$-Integral for a Rectilinear Elastic Anisotropic Body)

  • 안득만;최창연
    • 한국정밀공학회지
    • /
    • 제18권7호
    • /
    • pp.134-142
    • /
    • 2001
  • The integrals $J_k$(k=1,2) in the rectilinear anisotropis body in 2-D were determined using Lekhnitskii formalism. The relationship between $J_k$ and stress intensity factors are implified by the important equation between elastic compliance. The numerical evaluation of stress intensity factor for the single edge crack in mixed mode is determined by superposing known exact solutions.

  • PDF

전단하중을 받는 앵커시스템 정착부 콘크리트의 파괴 거동 (Fracture Behavior of Concrete Anchorage Zone of Anchor System subjected to Shear Load)

  • 손지웅;송하원;변근주
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.265-270
    • /
    • 2002
  • In this paper, structural behaviors of anchor systems subjected to shear loads are analyzed by using fracture analysis and experiments. Two dimensional finite element analyses of concrete anchor systems to predict breakout failure of concrete through progressive fracture are carried out by utilizing the so-called embedded crack model. Three dimensional finite element analyses are also carried out to investigate the fracture behavior of anchor systems having different effective lengths, edge distances, spacings between anchors, and direction of loads. Results of analyses are compared with both experimental results and design values of ACI code on anchor, and then applicability of finite element method for predicting fracture behavior of concrete anchor systems is verified.

  • PDF

PMD(Pre-Metal Dielectric) 선형 질화막 공정의 최적화에 대한 연구 (Optimization of PMD(Pre-Metal Dielectric) Linear Nitride Precess)

  • 정소영;김상용;서용진
    • 한국전기전자재료학회논문지
    • /
    • 제14권10호
    • /
    • pp.779-784
    • /
    • 2001
  • In this work, we studied the characteristics of nitride films for the optimization of PMD(pro-metal dielectric) linear process, which can be applied to the recent semiconductor manufacturing process. We split the deposit condition of nitride films into four parts such as PO(protect overcoat) nitride, baseline, low hydrogen and high stress and low hydrogen, respectively. We tried to find out correlation between BPSG deposition and densification. In order to analyze the changes of Si-H and Si-NH-Si bonding density, we used FTIR area method. We also investigated the crack generation on wafer edge after BPSG densification, and the changes of nitride film stress as a function of RF power variation to judge whether the deposited films.

  • PDF

개선된 미소면 모델을 적용한 매스콘크리트 기초슬래브의 초기균열거동 해석 (Early Age Cracking Analysis of Massive Concrete Base Slab with Enhanced Microplane Model)

  • 이윤;김진근;우상균;송영철;이성태
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.458-461
    • /
    • 2006
  • Early age cracking of concrete is a widespread and complicated problem, and diverse applications in practical engineering have focused on this issue. Since massive concrete base slab composes the infrastructure of other concrete structures such as pier, concrete dam, and high rise buildings, early age cracking of that is considered as a crucial problem. In this study, finite element analysis (FEA) implemented with the age-dependent microplane model was performed. For a massive concrete base slab, cracking initiation and propagation, and deformation variation were investigated with concrete age. In massive concrete slab, autogenous shrinkage increases the risk of early age cracking and it reduces reinforcement effect on control of early age cracking. Gradual crack occurrence is experienced from exterior surface towards interior of the slab in case of combined hydration heat and autogenous shrinkage. FEA implemented with enhanced microplane model successfully simulates the typical cracking patterns due to edge restraint in concrete base slab.

  • PDF

Prediction Methodology for Reliability of Semiconductor Packages

  • Kim, Jin-Young
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2002년도 International Symposium
    • /
    • pp.79-94
    • /
    • 2002
  • Root cause -Thermal expansion coefficient mismatch -Tape warpage -Initial die crack (die roughness) Guideline for failure prevention -Optimized tape/Substrate design for minimizing the warpage -Fine surface of die backside Root cause -Thermal expansion coefficient mismatch - Repetitive bending of a signal trace during TC cycle - Solder mask damage Guideline for failure prevention - Increase of trace width - Don't make signal trace passing the die edge - Proper material selection with thick substrate core Root cause -Thermal expansion coefficient mismatch -Creep deformation of solder joint(shear/normal) -Material degradation Guideline for failure Prevention -Increase of solder ball size -Proper selection of the PCB/Substrate thickness -Optimal design of the ball array -Solder mask opening type : NSMD -In some case, LGA type is better

  • PDF

접촉 역학적 접근에 의한 점탄성/탄성, 점탄성/점탄성 재료간의 접합 에너지 측정 (A Measurement of Adhesion Energy between Viscoelastic/Elastic, Viscoelastic/Viscoelastic Materials Using Contact Mechanics Approach)

  • 이찬;엄윤용
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1030-1035
    • /
    • 2003
  • The nanoimprint lithography technology makes higher density of semiconductor device and larger capacity of storage media. In this technology the induced damage while detaching polymer pattern from mold should be minimized. In order to analyze the problem, the basic knowledge of adhesion between the polymer and the mold is required. In this study a contact experiment of polyisobutylene specimen with spherical steel tip and polyisobutylene bead tip was conducted using nano indenter. During the contact experiment with various loading rate under load control the contact behavior of viscoelastic material was measured, i.e., the load and displacement between the tip and the specimen were measured. The data was analyzed by HBK model to obtain the stress intensity factor of contact edge and the contact radius as a function of time. Also the adhesion energies between steel/polyisobutylene and polyisobutylene/polyisobutylene were obtained employing the analysis of the crack of viscoelastic material by Schapery.

  • PDF

An experimental-computational investigation of fracture in brittle materials

  • De Proft, K.;Wells, G.N.;Sluys, L.J.;De Wilde, W.P.
    • Computers and Concrete
    • /
    • 제1권3호
    • /
    • pp.227-248
    • /
    • 2004
  • A combined experimental-computational study of a double edge-notched stone specimen subjected to tensile loading is presented. In the experimental part, the load-deformation response and the displacement field around the crack tip are recorded. An Electronic Speckle Pattern Interferometer (ESPI) is used to obtain the local displacement field. The experimental results are used to validate a numerical model for the description of fracture using finite elements. The numerical model uses displacement discontinuities to model cracks. At the discontinuity, a plasticity-based cohesive zone model is applied for monotonic loading and a combined damage-plasticity cohesive zone model is used for cyclic loading. Both local and global results from the numerical simulations are compared with experimental data. It is shown that local measurements add important information for the validation of the numerical model. Consequently, the numerical models are enhanced in order to correctly capture the experimentally observed behaviour.

가중함수이론을 이용한 선형이방성재료에서의 Mode III 균열해석 (Weight Function Theory for a Mode III Crack In a Rectilinear Anisotropic Material)

  • 안득만;권순홍
    • 한국해양공학회지
    • /
    • 제23권1호
    • /
    • pp.146-151
    • /
    • 2009
  • In this paper, a weight function theory for the calculation of the mode III stress intensity factor in a rectilinear anisotropic body is formulated. This formulation employs Lekhnitskii's formalism for two dimensional anisotropic materials. To illustrate the method used for the weight function theory, we calculated the mode III stress intensity factor in a single edge-notched configuration.

인서트 자동검사를 위한 시각인식 알고리즘 (A Machine Vision Algorithm for the Automatic Inspection of Inserts)

  • 이문규;신승호
    • 제어로봇시스템학회논문지
    • /
    • 제4권6호
    • /
    • pp.795-801
    • /
    • 1998
  • In this paper, we propose a machine vision algorithm for inspecting inserts which are used for milling and turning operations. Major defects of the inserts are breakage and crack on insert surfaces. Among the defects, breakages on the face of the inserts can be detected through three stages of the algorithm developed in this paper. In the first stage, a multi-layer perceptron is used to recognize the inserts being inspected. Edge detection of the insert image is performed in the second stage. Finally, in the third stage breakages on the insert face are identified using Hough transform. The overall algorithm is tested on real specimens and the results show that the algorithm works fairly well.

  • PDF