• Title/Summary/Keyword: Edge Computing Model

Search Result 116, Processing Time 0.027 seconds

Improved Broadcast Algorithm in Distributed Heterogeneous Systems (이질적인 분산 시스템에서의 개선된 브로드캐스트 알고리즘)

  • 박재현;김성천
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.3
    • /
    • pp.11-16
    • /
    • 2004
  • Recently, collaborative works are increased more and more over the distributed heterogeneous computing environments. The availability of high-speed wide-area networks has also enabled collaborative multimedia applications such as video conferencing, distributed interactive simulation and collaborative visualization. Distributed high performance computing and collaborative multimedia applications, it is extremely important to efficiently perform group communication over a heterogeneous network. Typical group communication patterns are broadcast and Multicast. Heuristic algorithms such as FEF, ECEF, look-ahead make up the message transmission tree for the broadcast and multicast over the distributed heterogeneous systems. But, there are some shortcomings because these select the optimal solution at each step, it may not be reached to the global optimum In this paper, we propose a new heuristic algerian that constructs tree for efficiently collective communication over the previous heterogeneous communication model which has heterogenity in both node and network. The previous heuristic algorithms my result in a locally optimal solution, so we present more reasonable and available criterion for choosing edge. Through the performance evaluation over the various communication cost, improved heuristic algorithm we proposed have less completion time than previous algorithms have, especially less time complexity than look-ahead approach.

Structural reliability analysis using temporal deep learning-based model and importance sampling

  • Nguyen, Truong-Thang;Dang, Viet-Hung
    • Structural Engineering and Mechanics
    • /
    • v.84 no.3
    • /
    • pp.323-335
    • /
    • 2022
  • The main idea of the framework is to seamlessly combine a reasonably accurate and fast surrogate model with the importance sampling strategy. Developing a surrogate model for predicting structures' dynamic responses is challenging because it involves high-dimensional inputs and outputs. For this purpose, a novel surrogate model based on cutting-edge deep learning architectures specialized for capturing temporal relationships within time-series data, namely Long-Short term memory layer and Transformer layer, is designed. After being properly trained, the surrogate model could be utilized in place of the finite element method to evaluate structures' responses without requiring any specialized software. On the other hand, the importance sampling is adopted to reduce the number of calculations required when computing the failure probability by drawing more relevant samples near critical areas. Thanks to the portability of the trained surrogate model, one can integrate the latter with the Importance sampling in a straightforward fashion, forming an efficient framework called TTIS, which represents double advantages: less number of calculations is needed, and the computational time of each calculation is significantly reduced. The proposed approach's applicability and efficiency are demonstrated through three examples with increasing complexity, involving a 1D beam, a 2D frame, and a 3D building structure. The results show that compared to the conventional Monte Carlo simulation, the proposed method can provide highly similar reliability results with a reduction of up to four orders of magnitudes in time complexity.

Design and Implementation of A Real-time Collaborative Group ICN Editor (실시간 협업지원 그룹 ICN 에디터의 설계 및 구현)

  • 류재광;김광훈
    • Journal of Internet Computing and Services
    • /
    • v.2 no.5
    • /
    • pp.1-7
    • /
    • 2001
  • Recently, there are two important research trends in the literature the red-time collaborative computing end electronic business process automation. This paper is one of those efforts that would establish an effective business office working and computing environment hough the integration of those two cutting-edge technologies. That is, we try to develop a workflow modeling tool that is semantically based upon the information control net(ICN), which is a typical workflow model for specifying office work procedures(business processes), and that is systemically based upon the real-time collaborative operations by a set of actors, which is called group, We name it "group ICN editor". This paper describes the design and implementation of the group ICN editor that is operable under the real-time collaborative computing environment. We use the Flexible rJAMM toolkit that enables the ICN editor to operate among multiple actors(group) through the event-driven collaboration platform, Consequently, a set of workflow and business processes defined through this editor is not only stored onto database but also transformed into the format of the workflow process definition language(WPDL) that is a standardized workflow description and specification language proposed by the workflow management coalition(WfMC).ion(WfMC).

  • PDF

New Medical Image Fusion Approach with Coding Based on SCD in Wireless Sensor Network

  • Zhang, De-gan;Wang, Xiang;Song, Xiao-dong
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2384-2392
    • /
    • 2015
  • The technical development and practical applications of big-data for health is one hot topic under the banner of big-data. Big-data medical image fusion is one of key problems. A new fusion approach with coding based on Spherical Coordinate Domain (SCD) in Wireless Sensor Network (WSN) for big-data medical image is proposed in this paper. In this approach, the three high-frequency coefficients in wavelet domain of medical image are pre-processed. This pre-processing strategy can reduce the redundant ratio of big-data medical image. Firstly, the high-frequency coefficients are transformed to the spherical coordinate domain to reduce the correlation in the same scale. Then, a multi-scale model product (MSMP) is used to control the shrinkage function so as to make the small wavelet coefficients and some noise removed. The high-frequency parts in spherical coordinate domain are coded by improved SPIHT algorithm. Finally, based on the multi-scale edge of medical image, it can be fused and reconstructed. Experimental results indicate the novel approach is effective and very useful for transmission of big-data medical image(especially, in the wireless environment).

A Survey on Concepts, Applications, and Challenges in Cyber-Physical Systems

  • Gunes, Volkan;Peter, Steffen;Givargis, Tony;Vahid, Frank
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.12
    • /
    • pp.4242-4268
    • /
    • 2014
  • The Cyber-Physical System (CPS) is a term describing a broad range of complex, multi-disciplinary, physically-aware next generation engineered system that integrates embedded computing technologies (cyber part) into the physical world. In order to define and understand CPS more precisely, this article presents a detailed survey of the related work, discussing the origin of CPS, the relations to other research fields, prevalent concepts, and practical applications. Further, this article enumerates an extensive set of technical challenges and uses specific applications to elaborate and provide insight into each specific concept. CPS is a very broad research area and therefore has diverse applications spanning different scales. Additionally, the next generation technologies are expected to play an important role on CPS research. All of CPS applications need to be designed considering the cutting-edge technologies, necessary system-level requirements, and overall impact on the real world.

Keyword Network Visualization for Text Summarization and Comparative Analysis (문서 요약 및 비교분석을 위한 주제어 네트워크 가시화)

  • Kim, Kyeong-rim;Lee, Da-yeong;Cho, Hwan-Gue
    • Journal of KIISE
    • /
    • v.44 no.2
    • /
    • pp.139-147
    • /
    • 2017
  • Most of the information prevailing in the Internet space consists of textual information. So one of the main topics regarding the huge document analyses that are required in the "big data" era is the development of an automated understanding system for textual data; accordingly, the automation of the keyword extraction for text summarization and abstraction is a typical research problem. But the simple listing of a few keywords is insufficient to reveal the complex semantic structures of the general texts. In this paper, a text-visualization method that constructs a graph by computing the related degrees from the selected keywords of the target text is developed; therefore, two construction models that provide the edge relation are proposed for the computing of the relation degree among keywords, as follows: influence-interval model and word- distance model. The finally visualized graph from the keyword-derived edge relation is more flexible and useful for the display of the meaning structure of the target text; furthermore, this abstract graph enables a fast and easy understanding of the target text. The authors' experiment showed that the proposed abstract-graph model is superior to the keyword list for the attainment of a semantic and comparitive understanding of text.

Detection of Brain Ventricle by Using Wavelet Transform and Automatic Thresholding in MRI Brain Images (MRI 뇌 영상에서 웨이브릿 변환과 자동적인 임계치 설정을 이용한 뇌실 검출)

  • Won, Chul-Ho;Kim, Dong-Hun;Woo, Sang-Hyo;Lee, Jung-Hyun;Kim, Chang-Wook;Chung, Yoon-Su;Cho, Jin-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.9
    • /
    • pp.1117-1124
    • /
    • 2007
  • In this paper, an algorithm that can define the threshold value automatically proposed in order to detect a brain ventricle in MRI brain images. After the wavelet transform, edge sharpness, which means the average magnitude of detail signals on the contour of the object, was computed by using the magnitude of horizontal and vertical detail signals. The contours of a brain ventricle were detected by increasing the threshold value repeatedly and computing edge sharpness. When the edge sharpness became maximal, the optimal threshold was determined, and the detection of a brain ventricle was accomplished finally. In this paper, we compared the proposed algorithm with the geodesic active contour model numerically and verified the efficiency of the proposed algorithm by applying real MRI brain images.

  • PDF

DART: Fast and Efficient Distributed Stream Processing Framework for Internet of Things

  • Choi, Jang-Ho;Park, Junyong;Park, Hwin Dol;Min, Ok-gee
    • ETRI Journal
    • /
    • v.39 no.2
    • /
    • pp.202-212
    • /
    • 2017
  • With the advent of the Internet-of-Things paradigm, the amount of data production has grown exponentially and the user demand for responsive consumption of data has increased significantly. Herein, we present DART, a fast and lightweight stream processing framework for the IoT environment. Because the DART framework targets a geospatially distributed environment of heterogeneous devices, the framework provides (1) an end-user tool for device registration and application authoring, (2) automatic worker node monitoring and task allocations, and (3) runtime management of user applications with fault tolerance. To maximize performance, the DART framework adopts an actor model in which applications are segmented into microtasks and assigned to an actor following a single responsibility. To prove the feasibility of the proposed framework, we implemented the DART system. We also conducted experiments to show that the system can significantly reduce computing burdens and alleviate network load by utilizing the idle resources of intermediate edge devices.

A Single Moving Object Tracking Algorithm for an Implementation of Unmanned Surveillance System (무인감시장치 구현을 위한 단일 이동물체 추적 알고리즘)

  • 이규원;김영호;이재구;박규태
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.11
    • /
    • pp.1405-1416
    • /
    • 1995
  • An effective algorithm for implementation of unmanned surveillance system which detects moving object from image sequences, predicts the direction of it, and drives the camera in real time is proposed. Outputs of proposed algorithm are coordinates of location of moving object, and they are converted to the values according to camera model. As a pre- processing, extraction of moving object and shape discrimination are performed. Existence of the moving object or scene change is detected by computing the temporal derivatives of consecutive two or more images in a sequence, and this result of derivatives is combined with the edge map from one original gray level image to obtain the position of moving object. Shape discri-mination(Target identification) is performed by analysis of distribution of projection profiles in x and y directions. To reduce the prediction error due to the fact that the motion cha- racteristic of walking man may have an abrupt change of moving direction, an order adaptive lattice structured linear predictor is proposed.

  • PDF

Implementation of Lane Departure Warning System using Lightweight Deep Learning based on VGG-13 (VGG-13 기반의 경량화된 딥러닝 기법을 이용한 차선 이탈 경고 시스템 구현)

  • Kang, Hyunwoo
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.7
    • /
    • pp.860-867
    • /
    • 2021
  • Lane detection is important technology for implementing ADAS or autonomous driving. Although edge detection has been typically used for the lane detection however, false detections occur frequently. To improve this problem, a deep learning based lane detection algorithm is proposed in this paper. This algorithm is mounted on an ARM-based embedded system to implement a LDW(lane departure warning). Since the embedded environment lacks computing power, the VGG-11, a lightweight model based on VGG-13, has been proposed. In order to evaluate the performance of the LDW, the test was conducted according to the test scenario of NHTSA.