• Title/Summary/Keyword: Edge Computing Model

Search Result 116, Processing Time 0.024 seconds

A XML Instance Repository Model based on the Edge-Labeled Graph (Edge-Labeled 그래프 기반의 XML 인스턴스 저장 모델)

  • Kim Jeong-Hee;Kwak Ho-Young
    • Journal of Internet Computing and Services
    • /
    • v.4 no.6
    • /
    • pp.33-42
    • /
    • 2003
  • A XML Instance repository model based on the Edge-Labeled Graph is suggested for storing the XML instance in Relational Databases, This repository model represents the XML instance as a data graph based on the Edge-Labeled Graph, extracts the defined value based on the structure of data path, element, attribute, and table index table presented as database schema, and stores these values using the Mapper module, In order to support querry, XML repository model offers the module translating XQL which is a query language under XPATH to SQL, and has DBtoXML generator module restoring the stored XML instance. As a result, it is possible to represent the storage relationship between the XML instances and the proposed repository model in terms of Graph-based Path, and it shows the possibility of easy search of specific element and attribute information.

  • PDF

Implementation of AIoT Edge Cluster System via Distributed Deep Learning Pipeline

  • Jeon, Sung-Ho;Lee, Cheol-Gyu;Lee, Jae-Deok;Kim, Bo-Seok;Kim, Joo-Man
    • International journal of advanced smart convergence
    • /
    • v.10 no.4
    • /
    • pp.278-288
    • /
    • 2021
  • Recently, IoT systems are cloud-based, so that continuous and large amounts of data collected from sensor nodes are processed in the data server through the cloud. However, in the centralized configuration of large-scale cloud computing, computational processing must be performed at a physical location where data collection and processing take place, and the need for edge computers to reduce the network load of the cloud system is gradually expanding. In this paper, a cluster system consisting of 6 inexpensive Raspberry Pi boards was constructed to perform fast data processing. And we propose "Kubernetes cluster system(KCS)" for processing large data collection and analysis by model distribution and data pipeline method. To compare the performance of this study, an ensemble model of deep learning was built, and the accuracy, processing performance, and processing time through the proposed KCS system and model distribution were compared and analyzed. As a result, the ensemble model was excellent in accuracy, but the KCS implemented as a data pipeline proved to be superior in processing speed..

Railway sleeper crack recognition based on edge detection and CNN

  • Wang, Gang;Xiang, Jiawei
    • Smart Structures and Systems
    • /
    • v.28 no.6
    • /
    • pp.779-789
    • /
    • 2021
  • Cracks in railway sleeper are an inevitable condition and has a significant influence on the safety of railway system. Although the technology of railway sleeper condition monitoring using machine learning (ML) models has been widely applied, the crack recognition accuracy is still in need of improvement. In this paper, a two-stage method using edge detection and convolutional neural network (CNN) is proposed to reduce the burden of computing for detecting cracks in railway sleepers with high accuracy. In the first stage, the edge detection is carried out by using the 3×3 neighborhood range algorithm to find out the possible crack areas, and a series of mathematical morphology operations are further used to eliminate the influence of noise targets to the edge detection results. In the second stage, a CNN model is employed to classify the results of edge detection. Through the analysis of abundant images of sleepers with cracks, it is proved that the cracks detected by the neighborhood range algorithm are superior to those detected by Sobel and Canny algorithms, which can be classified by proposed CNN model with high accuracy.

Direct Actuation Update Scheme based on Actuator in Wireless Networked Control System (Wireless Networked Control System에서 Actuator 기반 Direct Actuation Update 방법)

  • Yeunwoong Kyung;Tae-Kook Kim;Youngjun Kim
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.1
    • /
    • pp.125-129
    • /
    • 2023
  • Age of Information (AoI) has been introduced in wireless networked control systems (WNCSs) to guarantee timely status updates. In addition, as the edge computing (EC) architecture has been deployed in NCS, EC close to sensors can be exploited to collect status updates from sensors and provide control decisions to actuators. However, when lots of sensors simultaneously deliver status updates, EC can be overloaded, which cannot satisfy the AoI requirement. To mitigate this problem, this paper uses actuators with computing capability that can directly receive the status updates from sensors and determine the control decision without the help of EC. To analyze the AoI of the actuation update via EC or directly using actuators, this paper developed an analytic model based on timing diagrams. Extensive simulation results are included to verify the analytic model and to show the AoI with various settings.

Fluid analysis of edge Tones at low Mach number using the finite difference lattice Boltzmann method (차분격자볼츠만법에 의한 저Mach수 영역 edge tone의 유체해석)

  • Kang H. K.;Kim J. H.;Kim Y. T.;Lee Y. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.113-118
    • /
    • 2004
  • This paper presents a two-dimensional edge tone to predict the frequency characteristics of the discrete oscillations of a jet-edge feedback cycle by the finite difference lattice Boltzmann method (FDLBM). We use a new lattice BGK compressible fluid model that has an additional term and allow larger time increment comparing the conventional FDLBM, and also use a boundary fitted coordinates. The jet is chosen long enough in order to guarantee the parabolic velocity profile of the jet at the outlet, and the edge consists of a wedge with an angle of $\alpha=23^0$. At a stand-off distance $\omega$, the edge is inserted along the centreline of the jet, and a sinuous instability wave with real frequency f is assumed to be created in the vicinity of the nozzle and th propagate towards the downstream. We have succeeded in capturing very small pressure fluctuations result from periodically oscillation of jet around the edge. That pressure fluctuations propagate with the sound speed. Its interaction with the wedge produces an irrotational feedback field which, near the nozzle exit, is a periodic transverse flow producing the singularities at the nozzle lips. The lattice BGK model for compressible fluids is shown to be one of powerful tool for computing sound generation and propagation for a wide range of flows.

  • PDF

Design and Evaluation of a Fault-tolerant Publish/Subscribe System for IoT Applications (IoT 응용을 위한 결함 포용 발행/구독 시스템의 설계 및 평가)

  • Bae, Ihn-Han
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.8
    • /
    • pp.1101-1113
    • /
    • 2021
  • The rapid growth of sense-and-respond applications and the emerging cloud computing model present a new challenge: providing publish/subscribe middleware as a scalable and elastic cloud service. The publish/subscribe interaction model is a promising solution for scalable data dissemination over wide-area networks. In addition, there have been some work on the publish/subscribe messaging paradigm that guarantees reliability and availability in the face of node and link failures. These publish/subscribe systems are commonly used in information-centric networks and edge-fog-cloud infrastructures for IoT. The IoT has an edge-fog cloud infrastructure to efficiently process massive amounts of sensing data collected from the surrounding environment. In this paper. we propose a quorum-based hierarchical fault-tolerant publish/subscribe systems (QHFPS) to enable reliable delivery of messages in the presence of link and node failures. The QHFPS efficiently distributes IoT messages to the publish/subscribe brokers in fog overlay layers on the basis of proposing extended stepped grid (xS-grid) quorum for providing tolerance when faced with node failures and network partitions. We evaluate the performance of QHFPS in three aspects: number of transmitted Pub/Sub messages, average subscription delay, and subscritpion delivery rate with an analytical model.

Resource Allocation for Heterogeneous Service in Green Mobile Edge Networks Using Deep Reinforcement Learning

  • Sun, Si-yuan;Zheng, Ying;Zhou, Jun-hua;Weng, Jiu-xing;Wei, Yi-fei;Wang, Xiao-jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.7
    • /
    • pp.2496-2512
    • /
    • 2021
  • The requirements for powerful computing capability, high capacity, low latency and low energy consumption of emerging services, pose severe challenges to the fifth-generation (5G) network. As a promising paradigm, mobile edge networks can provide services in proximity to users by deploying computing components and cache at the edge, which can effectively decrease service delay. However, the coexistence of heterogeneous services and the sharing of limited resources lead to the competition between various services for multiple resources. This paper considers two typical heterogeneous services: computing services and content delivery services, in order to properly configure resources, it is crucial to develop an effective offloading and caching strategies. Considering the high energy consumption of 5G base stations, this paper considers the hybrid energy supply model of traditional power grid and green energy. Therefore, it is necessary to design a reasonable association mechanism which can allocate more service load to base stations rich in green energy to improve the utilization of green energy. This paper formed the joint optimization problem of computing offloading, caching and resource allocation for heterogeneous services with the objective of minimizing the on-grid power consumption under the constraints of limited resources and QoS guarantee. Since the joint optimization problem is a mixed integer nonlinear programming problem that is impossible to solve, this paper uses deep reinforcement learning method to learn the optimal strategy through a lot of training. Extensive simulation experiments show that compared with other schemes, the proposed scheme can allocate resources to heterogeneous service according to the green energy distribution which can effectively reduce the traditional energy consumption.

Digital Signage System Based on Intelligent Recommendation Model in Edge Environment: The Case of Unmanned Store

  • Lee, Kihoon;Moon, Nammee
    • Journal of Information Processing Systems
    • /
    • v.17 no.3
    • /
    • pp.599-614
    • /
    • 2021
  • This paper proposes a digital signage system based on an intelligent recommendation model. The proposed system consists of a server and an edge. The server manages the data, learns the advertisement recommendation model, and uses the trained advertisement recommendation model to determine the advertisements to be promoted in real time. The advertisement recommendation model provides predictions for various products and probabilities. The purchase index between the product and weather data was extracted and reflected using correlation analysis to improve the accuracy of predicting the probability of purchasing a product. First, the user information and product information are input to a deep neural network as a vector through an embedding process. With this information, the product candidate group generation model reduces the product candidates that can be purchased by a certain user. The advertisement recommendation model uses a wide and deep recommendation model to derive the recommendation list by predicting the probability of purchase for the selected products. Finally, the most suitable advertisements are selected using the predicted probability of purchase for all the users within the advertisement range. The proposed system does not communicate with the server. Therefore, it determines the advertisements using a model trained at the edge. It can also be applied to digital signage that requires immediate response from several users.

Network Intrusion Detection Using Transformer and BiGRU-DNN in Edge Computing

  • Huijuan Sun
    • Journal of Information Processing Systems
    • /
    • v.20 no.4
    • /
    • pp.458-476
    • /
    • 2024
  • To address the issue of class imbalance in network traffic data, which affects the network intrusion detection performance, a combined framework using transformers is proposed. First, Tomek Links, SMOTE, and WGAN are used to preprocess the data to solve the class-imbalance problem. Second, the transformer is used to encode traffic data to extract the correlation between network traffic. Finally, a hybrid deep learning network model combining a bidirectional gated current unit and deep neural network is proposed, which is used to extract long-dependence features. A DNN is used to extract deep level features, and softmax is used to complete classification. Experiments were conducted on the NSLKDD, UNSWNB15, and CICIDS2017 datasets, and the detection accuracy rates of the proposed model were 99.72%, 84.86%, and 99.89% on three datasets, respectively. Compared with other relatively new deep-learning network models, it effectively improved the intrusion detection performance, thereby improving the communication security of network data.

Analysis of partial offloading effects according to network load (네트워크 부하에 따른 부분 오프로딩 효과 분석)

  • Baik, Jae-Seok;Nam, Kwang-Woo;Jang, Min-Seok;Lee, Yon-Sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.591-593
    • /
    • 2022
  • This paper proposes a partial offloading system for minimizing application service processing latency in an FEC (Fog/Edge Computing) environment, and it analyzes the offloading effect of the proposed system against local-only and edge-server-only processing based on network load. A partial offloading algorithm based on reconstruction linearization of multi-branch structures is included in the proposed system, as is an optimal collaboration algorithm between mobile devices and edge servers [1,2]. The experiment was conducted by applying layer scheduling to a logical CNN model with a DAG topology. When compared to local or edge-only executions, experimental results show that the proposed system always provides efficient task processing strategies and processing latency.

  • PDF