• Title/Summary/Keyword: Edge Computing Model

Search Result 116, Processing Time 0.021 seconds

A Context-aware Task Offloading Scheme in Collaborative Vehicular Edge Computing Systems

  • Jin, Zilong;Zhang, Chengbo;Zhao, Guanzhe;Jin, Yuanfeng;Zhang, Lejun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.2
    • /
    • pp.383-403
    • /
    • 2021
  • With the development of mobile edge computing (MEC), some late-model application technologies, such as self-driving, augmented reality (AR) and traffic perception, emerge as the times require. Nevertheless, the high-latency and low-reliability of the traditional cloud computing solutions are difficult to meet the requirement of growing smart cars (SCs) with computing-intensive applications. Hence, this paper studies an efficient offloading decision and resource allocation scheme in collaborative vehicular edge computing networks with multiple SCs and multiple MEC servers to reduce latency. To solve this problem with effect, we propose a context-aware offloading strategy based on differential evolution algorithm (DE) by considering vehicle mobility, roadside units (RSUs) coverage, vehicle priority. On this basis, an autoregressive integrated moving average (ARIMA) model is employed to predict idle computing resources according to the base station traffic in different periods. Simulation results demonstrate that the practical performance of the context-aware vehicular task offloading (CAVTO) optimization scheme could reduce the system delay significantly.

Edge Computing Task Offloading of Internet of Vehicles Based on Improved MADDPG Algorithm

  • Ziyang Jin;Yijun Wang;Jingying Lv
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.2
    • /
    • pp.327-347
    • /
    • 2024
  • Edge computing is frequently employed in the Internet of Vehicles, although the computation and communication capabilities of roadside units with edge servers are limited. As a result, to perform distributed machine learning on resource-limited MEC systems, resources have to be allocated sensibly. This paper presents an Improved MADDPG algorithm to overcome the current IoV concerns of high delay and limited offloading utility. Firstly, we employ the MADDPG algorithm for task offloading. Secondly, the edge server aggregates the updated model and modifies the aggregation model parameters to achieve optimal policy learning. Finally, the new approach is contrasted with current reinforcement learning techniques. The simulation results show that compared with MADDPG and MAA2C algorithms, our algorithm improves offloading utility by 2% and 9%, and reduces delay by 29.6%.

Trend of Edge Machine Learning as-a-Service (서비스형 엣지 머신러닝 기술 동향)

  • Na, J.C.;Jeon, S.H.
    • Electronics and Telecommunications Trends
    • /
    • v.37 no.5
    • /
    • pp.44-53
    • /
    • 2022
  • The Internet of Things (IoT) is growing exponentially, with the number of IoT devices multiplying annually. Accordingly, the paradigm is changing from cloud computing to edge computing and even tiny edge computing because of the low latency and cost reduction. Machine learning is also shifting its role from the cloud to edge or tiny edge according to the paradigm shift. However, the fragmented and resource-constrained features of IoT devices have limited the development of artificial intelligence applications. Edge MLaaS (Machine Learning as-a-Service) has been studied to easily and quickly adopt machine learning to products and overcome the device limitations. This paper briefly summarizes what Edge MLaaS is and what element of research it requires.

An Efficient Service Function Chains Orchestration Algorithm for Mobile Edge Computing

  • Wang, Xiulei;Xu, Bo;Jin, Fenglin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.12
    • /
    • pp.4364-4384
    • /
    • 2021
  • The dynamic network state and the mobility of the terminals make the service function chain (SFC) orchestration mechanisms based on static and deterministic assumptions hard to be applied in SDN/NFV mobile edge computing networks. Designing dynamic and online SFC orchestration mechanism can greatly improve the execution efficiency of compute-intensive and resource-hungry applications in mobile edge computing networks. In order to increase the overall profit of service provider and reduce the resource cost, the system running time is divided into a sequence of time slots and a dynamic orchestration scheme based on an improved column generation algorithm is proposed in each slot. Firstly, the SFC dynamic orchestration problem is formulated as an integer linear programming (ILP) model based on layered graph. Then, in order to reduce the computation costs, a column generation model is used to simplify the ILP model. Finally, a two-stage heuristic algorithm based on greedy strategy is proposed. Four metrics are defined and the performance of the proposed algorithm is evaluated based on simulation. The results show that our proposal significantly provides more than 30% reduction of run time and about 12% improvement in service deployment success ratio compared to the Viterbi algorithm based mechanism.

A Study on the Latency Analysis of Bus Information System Based on Edge Cloud System (엣지 클라우드 시스템 기반 버스 정보 시스템의 지연시간 분석연구)

  • SEO Seungho;Dae-Sik Ko
    • Journal of Platform Technology
    • /
    • v.11 no.3
    • /
    • pp.3-11
    • /
    • 2023
  • Real-time control systems are growing rapidly as infrastructure technologies such as IoT and mobile communication develop and services that value real-time such as factory management and vehicle operation checks increase. Various solutions have been proposed to increase the time sensitivity of this system, but most real-time control systems are currently composed of local servers and multiple clients located in control stations, which are transmitted to local servers where control systems are located. In this paper, we proposed an edge computing-based real-time control model that can reduce the time it takes for the bus information system, one of the real-time control systems, to provide the information to the user at the time it collects the information. Simulating the existing model and the edge computing model, the edge computing model confirmed that the cost for users to receive data is reduced from at least 10% to up to 80% compared to the existing model.

  • PDF

Edge Computing Model based on Federated Learning for COVID-19 Clinical Outcome Prediction in the 5G Era

  • Ruochen Huang;Zhiyuan Wei;Wei Feng;Yong Li;Changwei Zhang;Chen Qiu;Mingkai Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.4
    • /
    • pp.826-842
    • /
    • 2024
  • As 5G and AI continue to develop, there has been a significant surge in the healthcare industry. The COVID-19 pandemic has posed immense challenges to the global health system. This study proposes an FL-supported edge computing model based on federated learning (FL) for predicting clinical outcomes of COVID-19 patients during hospitalization. The model aims to address the challenges posed by the pandemic, such as the need for sophisticated predictive models, privacy concerns, and the non-IID nature of COVID-19 data. The model utilizes the FATE framework, known for its privacy-preserving technologies, to enhance predictive precision while ensuring data privacy and effectively managing data heterogeneity. The model's ability to generalize across diverse datasets and its adaptability in real-world clinical settings are highlighted by the use of SHAP values, which streamline the training process by identifying influential features, thus reducing computational overhead without compromising predictive precision. The study demonstrates that the proposed model achieves comparable precision to specific machine learning models when dataset sizes are identical and surpasses traditional models when larger training data volumes are employed. The model's performance is further improved when trained on datasets from diverse nodes, leading to superior generalization and overall performance, especially in scenarios with insufficient node features. The integration of FL with edge computing contributes significantly to the reliable prediction of COVID-19 patient outcomes with greater privacy. The research contributes to healthcare technology by providing a practical solution for early intervention and personalized treatment plans, leading to improved patient outcomes and efficient resource allocation during public health crises.

Many-objective joint optimization for dependency-aware task offloading and service caching in mobile edge computing

  • Xiangyu Shi;Zhixia Zhang;Zhihua Cui;Xingjuan Cai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.5
    • /
    • pp.1238-1259
    • /
    • 2024
  • Previous studies on joint optimization of computation offloading and service caching policies in Mobile Edge Computing (MEC) have often neglected the impact of dependency-aware subtasks, edge server resource constraints, and multiple users on policy formulation. To remedy this deficiency, this paper proposes a many-objective joint optimization dependency-aware task offloading and service caching model (MaJDTOSC). MaJDTOSC considers the impact of dependencies between subtasks on the joint optimization problem of task offloading and service caching in multi-user, resource-constrained MEC scenarios, and takes the task completion time, energy consumption, subtask hit rate, load variability, and storage resource utilization as optimization objectives. Meanwhile, in order to better solve MaJDTOSC, a many-objective evolutionary algorithm TSMSNSGAIII based on a three-stage mating selection strategy is proposed. Simulation results show that TSMSNSGAIII exhibits an excellent and stable performance in solving MaJDTOSC with different number of users setting and can converge faster. Therefore, it is believed that TSMSNSGAIII can provide appropriate sub-task offloading and service caching strategies in multi-user and resource-constrained MEC scenarios, which can greatly improve the system offloading efficiency and enhance the user experience.

Partial Offloading System of Multi-branch Structures in Fog/Edge Computing Environment (FEC 환경에서 다중 분기구조의 부분 오프로딩 시스템)

  • Lee, YonSik;Ding, Wei;Nam, KwangWoo;Jang, MinSeok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.10
    • /
    • pp.1551-1558
    • /
    • 2022
  • We propose a two-tier cooperative computing system comprised of a mobile device and an edge server for partial offloading of multi-branch structures in Fog/Edge Computing environments in this paper. The proposed system includes an algorithm for splitting up application service processing by using reconstructive linearization techniques for multi-branch structures, as well as an optimal collaboration algorithm based on partial offloading between mobile device and edge server. Furthermore, we formulate computation offloading and CNN layer scheduling as latency minimization problems and simulate the effectiveness of the proposed system. As a result of the experiment, the proposed algorithm is suitable for both DAG and chain topology, adapts well to different network conditions, and provides efficient task processing strategies and processing time when compared to local or edge-only executions. Furthermore, the proposed system can be used to conduct research on the optimization of the model for the optimal execution of application services on mobile devices and the efficient distribution of edge resource workloads.

Hierarchical Service Binding and Resource Allocation Design for Context-based IoT Service in MEC Networks (상황인지 기반 IoT-MEC 서비스를 위한 계층적 서비스 바인딩 및 자원관리 구조 설계)

  • Noh, Wonjong
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.598-606
    • /
    • 2021
  • In this paper, we presents a new service binding and resource management model for context based services in mobile edge computing (MEC) networks. The proposed control is composed of two layers: MEC service bindng control layer (MCL) and user context control layer (UCL). The MCL manages service binding construction, resource allocation, and service policy construction from a system point of view; and the UCL manages real-time service adaptation using meta-objects. Through simulations, we confirmed that the proposed control offers enhanced throughput and content transfer time when it is compared to the legacy computing and control models. The proposed control model can be employed as a key component for the context based various internet-of-things (IoT) services in MEC environments.

Dynamic Computation Offloading Based on Q-Learning for UAV-Based Mobile Edge Computing

  • Shreya Khisa;Sangman Moh
    • Smart Media Journal
    • /
    • v.12 no.3
    • /
    • pp.68-76
    • /
    • 2023
  • Emerging mobile edge computing (MEC) can be used in battery-constrained Internet of things (IoT). The execution latency of IoT applications can be improved by offloading computation-intensive tasks to an MEC server. Recently, the popularity of unmanned aerial vehicles (UAVs) has increased rapidly, and UAV-based MEC systems are receiving considerable attention. In this paper, we propose a dynamic computation offloading paradigm for UAV-based MEC systems, in which a UAV flies over an urban environment and provides edge services to IoT devices on the ground. Since most IoT devices are energy-constrained, we formulate our problem as a Markov decision process considering the energy level of the battery of each IoT device. We also use model-free Q-learning for time-critical tasks to maximize the system utility. According to our performance study, the proposed scheme can achieve desirable convergence properties and make intelligent offloading decisions.