• Title/Summary/Keyword: Edge Computing Model

Search Result 116, Processing Time 0.023 seconds

Single Image Dehazing Based on Depth Map Estimation via Generative Adversarial Networks (생성적 대립쌍 신경망을 이용한 깊이지도 기반 연무제거)

  • Wang, Yao;Jeong, Woojin;Moon, Young Shik
    • Journal of Internet Computing and Services
    • /
    • v.19 no.5
    • /
    • pp.43-54
    • /
    • 2018
  • Images taken in haze weather are characteristic of low contrast and poor visibility. The process of reconstructing clear-weather image from a hazy image is called dehazing. The main challenge of image dehazing is to estimate the transmission map or depth map for an input hazy image. In this paper, we propose a single image dehazing method by utilizing the Generative Adversarial Network(GAN) for accurate depth map estimation. The proposed GAN model is trained to learn a nonlinear mapping between the input hazy image and corresponding depth map. With the trained model, first the depth map of the input hazy image is estimated and used to compute the transmission map. Then a guided filter is utilized to preserve the important edge information of the hazy image, thus obtaining a refined transmission map. Finally, the haze-free image is recovered via atmospheric scattering model. Although the proposed GAN model is trained on synthetic indoor images, it can be applied to real hazy images. The experimental results demonstrate that the proposed method achieves superior dehazing results against the state-of-the-art algorithms on both the real hazy images and the synthetic hazy images, in terms of quantitative performance and visual performance.

A Method for Protein Functional Flow Configuration and Validation (단백질 기능 흐름 모델 구성 및 평가 기법)

  • Jang, Woo-Hyuk;Jung, Suk-Hoon;Han, Dong-Soo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.4
    • /
    • pp.284-288
    • /
    • 2009
  • With explosively growing PPI databases, the computational approach for a prediction and configuration of PPI network has been a big stream in the bioinformatics area. Recent researches gradually consider physicochemical properties of proteins and support high resolution results with integration of experimental results. With regard to current research trend, it is very close future to complete a PPI network configuration of each organism. However, direct applying the PPI network to real field is complicated problem because PPI network is only a set of co-expressive proteins or gene products, and its network link means simple physical binding rather than in-depth knowledge of biological process. In this paper, we suggest a protein functional flow model which is a directed network based on a protein functions' relation of signaling transduction pathway. The vertex of the suggested model is a molecular function annotated by gene ontology, and the relations among the vertex are considered as edges. Thus, it is easy to trace a specific function's transition, and it can be a constraint to extract a meaningful sub-path from whole PPI network. To evaluate the model, 11 functional flow models of Homo sapiens were built from KEGG, and Cronbach's alpha values were measured (alpha=0.67). Among 1023 functional flows, 765 functional flows showed 0.6 or higher alpha values.

Makeup transfer by applying a loss function based on facial segmentation combining edge with color information (에지와 컬러 정보를 결합한 안면 분할 기반의 손실 함수를 적용한 메이크업 변환)

  • Lim, So-hyun;Chun, Jun-chul
    • Journal of Internet Computing and Services
    • /
    • v.23 no.4
    • /
    • pp.35-43
    • /
    • 2022
  • Makeup is the most common way to improve a person's appearance. However, since makeup styles are very diverse, there are many time and cost problems for an individual to apply makeup directly to himself/herself.. Accordingly, the need for makeup automation is increasing. Makeup transfer is being studied for makeup automation. Makeup transfer is a field of applying makeup style to a face image without makeup. Makeup transfer can be divided into a traditional image processing-based method and a deep learning-based method. In particular, in deep learning-based methods, many studies based on Generative Adversarial Networks have been performed. However, both methods have disadvantages in that the resulting image is unnatural, the result of makeup conversion is not clear, and it is smeared or heavily influenced by the makeup style face image. In order to express the clear boundary of makeup and to alleviate the influence of makeup style facial images, this study divides the makeup area and calculates the loss function using HoG (Histogram of Gradient). HoG is a method of extracting image features through the size and directionality of edges present in the image. Through this, we propose a makeup transfer network that performs robust learning on edges.By comparing the image generated through the proposed model with the image generated through BeautyGAN used as the base model, it was confirmed that the performance of the model proposed in this study was superior, and the method of using facial information that can be additionally presented as a future study.

A Study on the System for AI Service Production (인공지능 서비스 운영을 위한 시스템 측면에서의 연구)

  • Hong, Yong-Geun
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.10
    • /
    • pp.323-332
    • /
    • 2022
  • As various services using AI technology are being developed, much attention is being paid to AI service production. Recently, AI technology is acknowledged as one of ICT services, a lot of research is being conducted for general-purpose AI service production. In this paper, I describe the research results in terms of systems for AI service production, focusing on the distribution and production of machine learning models, which are the final steps of general machine learning development procedures. Three different Ubuntu systems were built, and experiments were conducted on the system, using data from 2017 validation COCO dataset in combination of different AI models (RFCN, SSD-Mobilenet) and different communication methods (gRPC, REST) to request and perform AI services through Tensorflow serving. Through various experiments, it was found that the type of AI model has a greater influence on AI service inference time than AI machine communication method, and in the case of object detection AI service, the number and complexity of objects in the image are more affected than the file size of the image to be detected. In addition, it was confirmed that if the AI service is performed remotely rather than locally, even if it is a machine with good performance, it takes more time to infer the AI service than if it is performed locally. Through the results of this study, it is expected that system design suitable for service goals, AI model development, and efficient AI service production will be possible.

A Study on Analysis of Problems in Data Collection for Smart Farm Construction (스마트팜 구축을 위한 데이터수집의 문제점 분석 연구)

  • Kim Song Gang;Nam Ki Po
    • Convergence Security Journal
    • /
    • v.22 no.5
    • /
    • pp.69-80
    • /
    • 2022
  • Now that climate change and food resource security are becoming issues around the world, smart farms are emerging as an alternative to solve them. In addition, changes in the production environment in the primary industry are a major concern for people engaged in all primary industries (agriculture, livestock, fishery), and the resulting food shortage problem is an important problem that we all need to solve. In order to solve this problem, in the primary industry, efforts are made to solve the food shortage problem through productivity improvement by introducing smart farms using the 4th industrial revolution such as ICT and BT and IoT big data and artificial intelligence technologies. This is done through the public and private sectors.This paper intends to consider the minimum requirements for the smart farm data collection system for the development and utilization of smart farms, the establishment of a sustainable agricultural management system, the sequential system construction method, and the purposeful, efficient and usable data collection system. In particular, we analyze and improve the problems of the data collection system for building a Korean smart farm standard model, which is facing limitations, based on in-depth investigations in the field of livestock and livestock (pig farming) and analysis of various cases, to establish an efficient and usable big data collection system. The goal is to propose a method for collecting big data.

Performance of Collaboration Activities upon SME's Idiosyncrasy (중소기업 특성에 따른 외부 협업 활동이 혁신성과에 미치는 영향)

  • Lee, Hye Sun;Oh, Junseok;Lee, Jaeki;Lee, Bong Gyou
    • Journal of Internet Computing and Services
    • /
    • v.14 no.6
    • /
    • pp.95-105
    • /
    • 2013
  • Recently, SME's Collaboration activities have become one of a vital factor for sustaining competitive edge. This is because of the rapidly changing and competitive market environment, and also to leverage performance by overcoming obstacles of having limited internal resources. Discussing about the effects and relationships of the firm's collaboration activities and its outputs are not new. However, as ICT and various technologies have been diffused into the traditional industries, boundaries and practice capabilities within the industries are becoming ambiguous. Thus contents of the products/services and their development methods are also go and come over the industries. Although many researchers suggested the relations of SME's collaboration activities and innovation performances, most of the previous literatures are focusing on broad perspectives of firm's environmental factors rather than considering various SME's idiosyncrasy factors such as their major product and customer types at once. Therefore, the purpose of this paper is to analyze how SME(Small Medium Enterprise)'s external collaboration activities by their idiosyncrasy act as an input to types of innovation performance. In order to analyze collaboration effects in detail, we defined factors that can represent the SME's business environment - Perceived importance of using external resources, Perceived importance of external partnership, Collaboration and Collaboration levels of Major Product types, Customer types and lastly the Firm Sizes. We have also specifically divided the performance of innovation types as product innovation and process innovation based on existing research. In this study, the empirical analysis is based on Probit Regression Model to observe the correlations with the impact of each SME's business environment and their activities. For the empirical data, 497 samples were collected which, this sample data was extracted from the 'Korean Open Innovation Survey' performed by ETRI(Korean Electronics Telecommunications Research Institute) in 2010. As a result, empirical test results indicated that the impact of collaboration varies depend on the innovation types (Product and Process Innovation). The Impact of the collaboration level for the product innovation tend to be more effective when SMEs are developing for a final product, targeting on for individual customers (B2C). But on the other hand, the analysis result of the Process innovation tend to be higher than the product innovation, when SMEs are developing raw materials for their partners or to other firms targeting on for manufacturing industries(B2B). Also perceived importance of using external resources has effected to both product and process innovation performance. But Perceived importance of external partnership was statistically insignificant. Interesting finding was that the service product has negative effects on for the process innovation performance. And Relationship between size of the firms and their external collaboration activities with their performance of the innovations indicated that the bigger firms(over 100 of employees) tend to have better for both product and process innovations. Finally, implications of the results can be suggested as performance of innovation can be varied depends on firm's unique business idiosyncrasy as well as levels of external collaboration activities. The Implication of this research can be considered for firms in selecting an appropriate strategy as well as for policy makers.