• Title/Summary/Keyword: Edge Computing Model

Search Result 116, Processing Time 0.026 seconds

Network Anomaly Traffic Detection Using WGAN-CNN-BiLSTM in Big Data Cloud-Edge Collaborative Computing Environment

  • Yue Wang
    • Journal of Information Processing Systems
    • /
    • v.20 no.3
    • /
    • pp.375-390
    • /
    • 2024
  • Edge computing architecture has effectively alleviated the computing pressure on cloud platforms, reduced network bandwidth consumption, and improved the quality of service for user experience; however, it has also introduced new security issues. Existing anomaly detection methods in big data scenarios with cloud-edge computing collaboration face several challenges, such as sample imbalance, difficulty in dealing with complex network traffic attacks, and difficulty in effectively training large-scale data or overly complex deep-learning network models. A lightweight deep-learning model was proposed to address these challenges. First, normalization on the user side was used to preprocess the traffic data. On the edge side, a trained Wasserstein generative adversarial network (WGAN) was used to supplement the data samples, which effectively alleviates the imbalance issue of a few types of samples while occupying a small amount of edge-computing resources. Finally, a trained lightweight deep learning network model is deployed on the edge side, and the preprocessed and expanded local data are used to fine-tune the trained model. This ensures that the data of each edge node are more consistent with the local characteristics, effectively improving the system's detection ability. In the designed lightweight deep learning network model, two sets of convolutional pooling layers of convolutional neural networks (CNN) were used to extract spatial features. The bidirectional long short-term memory network (BiLSTM) was used to collect time sequence features, and the weight of traffic features was adjusted through the attention mechanism, improving the model's ability to identify abnormal traffic features. The proposed model was experimentally demonstrated using the NSL-KDD, UNSW-NB15, and CIC-ISD2018 datasets. The accuracies of the proposed model on the three datasets were as high as 0.974, 0.925, and 0.953, respectively, showing superior accuracy to other comparative models. The proposed lightweight deep learning network model has good application prospects for anomaly traffic detection in cloud-edge collaborative computing architectures.

Performance analysis of local exit for distributed deep neural networks over cloud and edge computing

  • Lee, Changsik;Hong, Seungwoo;Hong, Sungback;Kim, Taeyeon
    • ETRI Journal
    • /
    • v.42 no.5
    • /
    • pp.658-668
    • /
    • 2020
  • In edge computing, most procedures, including data collection, data processing, and service provision, are handled at edge nodes and not in the central cloud. This decreases the processing burden on the central cloud, enabling fast responses to end-device service requests in addition to reducing bandwidth consumption. However, edge nodes have restricted computing, storage, and energy resources to support computation-intensive tasks such as processing deep neural network (DNN) inference. In this study, we analyze the effect of models with single and multiple local exits on DNN inference in an edge-computing environment. Our test results show that a single-exit model performs better with respect to the number of local exited samples, inference accuracy, and inference latency than a multi-exit model at all exit points. These results signify that higher accuracy can be achieved with less computation when a single-exit model is adopted. In edge computing infrastructure, it is therefore more efficient to adopt a DNN model with only one or a few exit points to provide a fast and reliable inference service.

GAIN-QoS: A Novel QoS Prediction Model for Edge Computing

  • Jiwon Choi;Jaewook Lee;Duksan Ryu;Suntae Kim;Jongmoon Baik
    • Journal of Web Engineering
    • /
    • v.21 no.1
    • /
    • pp.27-52
    • /
    • 2021
  • With recent increases in the number of network-connected devices, the number of edge computing services that provide similar functions has increased. Therefore, it is important to recommend an optimal edge computing service, based on quality-of-service (QoS). However, in the real world, there is a cold-start problem in QoS data: highly sparse invocation. Therefore, it is difficult to recommend a suitable service to the user. Deep learning techniques were applied to address this problem, or context information was used to extract deep features between users and services. However, edge computing environment has not been considered in previous studies. Our goal is to predict the QoS values in real edge computing environments with improved accuracy. To this end, we propose a GAIN-QoS technique. It clusters services based on their location information, calculates the distance between services and users in each cluster, and brings the QoS values of users within a certain distance. We apply a Generative Adversarial Imputation Nets (GAIN) model and perform QoS prediction based on this reconstructed user service invocation matrix. When the density is low, GAIN-QoS shows superior performance to other techniques. In addition, the distance between the service and user slightly affects performance. Thus, compared to other methods, the proposed method can significantly improve the accuracy of QoS prediction for edge computing, which suffers from cold-start problem.

Task Scheduling and Resource Management Strategy for Edge Cloud Computing Using Improved Genetic Algorithm

  • Xiuye Yin;Liyong Chen
    • Journal of Information Processing Systems
    • /
    • v.19 no.4
    • /
    • pp.450-464
    • /
    • 2023
  • To address the problems of large system overhead and low timeliness when dealing with task scheduling in mobile edge cloud computing, a task scheduling and resource management strategy for edge cloud computing based on an improved genetic algorithm was proposed. First, a user task scheduling system model based on edge cloud computing was constructed using the Shannon theorem, including calculation, communication, and network models. In addition, a multi-objective optimization model, including delay and energy consumption, was constructed to minimize the sum of two weights. Finally, the selection, crossover, and mutation operations of the genetic algorithm were improved using the best reservation selection algorithm and normal distribution crossover operator. Furthermore, an improved legacy algorithm was selected to deal with the multi-objective problem and acquire the optimal solution, that is, the best computing task scheduling scheme. The experimental analysis of the proposed strategy based on the MATLAB simulation platform shows that its energy loss does not exceed 50 J, and the time delay is 23.2 ms, which are better than those of other comparison strategies.

A Performance Comparison of Parallel Programming Models on Edge Devices (엣지 디바이스에서의 병렬 프로그래밍 모델 성능 비교 연구)

  • Dukyun Nam
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.4
    • /
    • pp.165-172
    • /
    • 2023
  • Heterogeneous computing is a technology that utilizes different types of processors to perform parallel processing. It maximizes task processing and energy efficiency by leveraging various computing resources such as CPUs, GPUs, and FPGAs. On the other hand, edge computing has developed with IoT and 5G technologies. It is a distributed computing that utilizes computing resources close to clients, thereby offloading the central server. It has evolved to intelligent edge computing combined with artificial intelligence. Intelligent edge computing enables total data processing, such as context awareness, prediction, control, and simple processing for the data collected on the edge. If heterogeneous computing can be successfully applied in the edge, it is expected to maximize job processing efficiency while minimizing dependence on the central server. In this paper, experiments were conducted to verify the feasibility of various parallel programming models on high-end and low-end edge devices by using benchmark applications. We analyzed the performance of five parallel programming models on the Raspberry Pi 4 and Jetson Orin Nano as low-end and high-end devices, respectively. In the experiment, OpenACC showed the best performance on the low-end edge device and OpenSYCL on the high-end device due to the stability and optimization of system libraries.

Implementation of Deep Learning-based Label Inspection System Applicable to Edge Computing Environments (엣지 컴퓨팅 환경에서 적용 가능한 딥러닝 기반 라벨 검사 시스템 구현)

  • Bae, Ju-Won;Han, Byung-Gil
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.2
    • /
    • pp.77-83
    • /
    • 2022
  • In this paper, the two-stage object detection approach is proposed to implement a deep learning-based label inspection system on edge computing environments. Since the label printed on the products during the production process contains important information related to the product, it is significantly to check the label information is correct. The proposed system uses the lightweight deep learning model that able to employ in the low-performance edge computing devices, and the two-stage object detection approach is applied to compensate for the low accuracy relatively. The proposed Two-Stage object detection approach consists of two object detection networks, Label Area Detection Network and Character Detection Network. Label Area Detection Network finds the label area in the product image, and Character Detection Network detects the words in the label area. Using this approach, we can detect characters precise even with a lightweight deep learning models. The SF-YOLO model applied in the proposed system is the YOLO-based lightweight object detection network designed for edge computing devices. This model showed up to 2 times faster processing time and a considerable improvement in accuracy, compared to other YOLO-based lightweight models such as YOLOv3-tiny and YOLOv4-tiny. Also since the amount of computation is low, it can be easily applied in edge computing environments.

Stale Synchronous Parallel Model in Edge Computing Environment (Edge Computing 환경에서의 Stale Synchronous Parallel Model 연구)

  • Kim, Dong-Hyun;Lee, Byung-Jun;Kim, Kyung-Tae;Youn, Hee-Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2018.01a
    • /
    • pp.89-92
    • /
    • 2018
  • 본 논문에서는 Edge computing 환경에서 다수의 노드들로 구성된 네트워크의 디바이스를 효율적으로 관리하기 위한 방법을 제안한다. 기존의 클라이언트-서버 모델은 모든 데이터와 그에 대한 요청을 중심 서버에서 처리하기 때문에, 다수의 노드로부터 생성된 많은 양의 데이터를 처리하는 데 빠른 응답속도를 보장하지 못한다. Edge computing은 분담을 통해 네트워크의 부담을 줄일 수 있는 IoT 네트워크에 적합한 방법으로, 데이터를 전송하고 받는 과정에서 네트워크의 대역폭을 사용하는 대신 서로 연결된 노드들이 협력해서 데이터를 처리하고, 또한 네트워크 말단에서의 데이터 처리가 허용되어 데이터 센터의 부담을 줄일 수 있다. 여러병렬 기계학습 모델 중 본 연구에서는 Stale Synchronous Parallel(SSP) 모델을 이용하여 Edge 노드에서 분산기계 학습에 적용하였다.

  • PDF

An Offloading Scheduling Strategy with Minimized Power Overhead for Internet of Vehicles Based on Mobile Edge Computing

  • He, Bo;Li, Tianzhang
    • Journal of Information Processing Systems
    • /
    • v.17 no.3
    • /
    • pp.489-504
    • /
    • 2021
  • By distributing computing tasks among devices at the edge of networks, edge computing uses virtualization, distributed computing and parallel computing technologies to enable users dynamically obtain computing power, storage space and other services as needed. Applying edge computing architectures to Internet of Vehicles can effectively alleviate the contradiction among the large amount of computing, low delayed vehicle applications, and the limited and uneven resource distribution of vehicles. In this paper, a predictive offloading strategy based on the MEC load state is proposed, which not only considers reducing the delay of calculation results by the RSU multi-hop backhaul, but also reduces the queuing time of tasks at MEC servers. Firstly, the delay factor and the energy consumption factor are introduced according to the characteristics of tasks, and the cost of local execution and offloading to MEC servers for execution are defined. Then, from the perspective of vehicles, the delay preference factor and the energy consumption preference factor are introduced to define the cost of executing a computing task for another computing task. Furthermore, a mathematical optimization model for minimizing the power overhead is constructed with the constraints of time delay and power consumption. Additionally, the simulated annealing algorithm is utilized to solve the optimization model. The simulation results show that this strategy can effectively reduce the system power consumption by shortening the task execution delay. Finally, we can choose whether to offload computing tasks to MEC server for execution according to the size of two costs. This strategy not only meets the requirements of time delay and energy consumption, but also ensures the lowest cost.

Type of Machine Learning Model for Edge Computing Environment: A Survey (Edge Computing 환경을 위한 기계학습 모델 유형 조사)

  • Kim, Min-Woo;Lee, Tae-Ho;Lee, Byung-Jun;Kim, Kyung-Tae;Youn, Hee-Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.07a
    • /
    • pp.111-112
    • /
    • 2019
  • Edge computing 환경에서는 노드끼리 직접 또는 간접적으로 전송되는 많은 수의 데이터가 Computing 노드에 의해 수집된다. Computing 노드에 실시간 적으로 전송되어지는 데이터의 저장 및 처리를 위해 기계학습(Machine learning) 기법이 사용된다. 기존의 기계학습 모델의 학습방법의 경우 Edge computing 노드의 지능화에 다소 맞지 않는 방법이며 노드들 간의 협업 시스템을 기계학습 모델에 구축하는 것 또한 중요개선사항 중 하나이다. 본 논문에서는 Edge computing 환경에서 적용 가능한 기계학습 모델을 조사하였다. 본 조사를 통하여 향후 edge computing 환경에서의 제약사항에 대해 더 구체적이며 다양한 연구방향을 제시할 수 있으며 효율적인 모델 적용을 목표로 한다.

  • PDF

A cache placement algorithm based on comprehensive utility in big data multi-access edge computing

  • Liu, Yanpei;Huang, Wei;Han, Li;Wang, Liping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.11
    • /
    • pp.3892-3912
    • /
    • 2021
  • The recent rapid growth of mobile network traffic places multi-access edge computing in an important position to reduce network load and improve network capacity and service quality. Contrasting with traditional mobile cloud computing, multi-access edge computing includes a base station cooperative cache layer and user cooperative cache layer. Selecting the most appropriate cache content according to actual needs and determining the most appropriate location to optimize the cache performance have emerged as serious issues in multi-access edge computing that must be solved urgently. For this reason, a cache placement algorithm based on comprehensive utility in big data multi-access edge computing (CPBCU) is proposed in this work. Firstly, the cache value generated by cache placement is calculated using the cache capacity, data popularity, and node replacement rate. Secondly, the cache placement problem is then modeled according to the cache value, data object acquisition, and replacement cost. The cache placement model is then transformed into a combinatorial optimization problem and the cache objects are placed on the appropriate data nodes using tabu search algorithm. Finally, to verify the feasibility and effectiveness of the algorithm, a multi-access edge computing experimental environment is built. Experimental results show that CPBCU provides a significant improvement in cache service rate, data response time, and replacement number compared with other cache placement algorithms.