• 제목/요약/키워드: Edge 음

검색결과 35건 처리시간 0.031초

Vortex-Edge의 상호작용에 기인한 유동소음의 전산해석 (Numerical Analysis of Flow-Induced Noise by Vortex-Edge Interaction)

  • 강호근;김은라
    • 한국해양공학회지
    • /
    • 제18권5호
    • /
    • pp.15-21
    • /
    • 2004
  • An edge tone is the discrete tone or narrow-band sound produced by an oscillating free shear layer, impinging on a rigid surface. In this paper, we present a 2-D edge tone to predict the frequency characteristics of the discrete oscillations of a jet-edge feedback cycle, using the finite difference lattice Boltzmann method (FDLBM). We use a modified version of the lattice BGK compressible fluid model, adding an additional term and allowing for longer time increments, compared to a conventional FDLBM, and also use a boundary fitted coordinates system. The jet is chosen long enough in order to guarantee the parabolic velocity profile of the jet at the outlet, and the edge consists of a wedge with an angle of ${\alpha}$ = 23. At a stand-off distance, the edge is inserted along the centerline of the jet, and a sinuous instability wave, with real frequency, is assumed to be created in the vicinity of the nozzle and propagates towards the downstream. We have succeeded in capturing very small pressure fluctuations, resulting from periodical oscillations of a jet around the edge. The pressure fluctuations propagate with the speed of sound. Its interaction with the wedge produces an non-rotational feedback field, which, near the nozzle exit, is a periodic transverse flow, producing the singularities at the nozzle lips.

Vortex-Edge 의 상호작용에 의한 유동소음의 수치계산 (Numerical Investigation of Aerodynamic Sounds by Vortex-Edge Interaction)

  • 강호근;김정환;김유택;이영호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1915-1920
    • /
    • 2004
  • An edge tone is the discrete tone or narrow-band sound produced by an oscillating free shear layer impinging on a rigid surface. In this paper we present a two-dimensional edge tone to predict the frequency characteristics of the discrete oscillations of a jet-edge feedback cycle by the finite difference lattice Boltzmann method. We use a new lattice BGK compressible fluid model that has an additional term and allow larger time increment comparing a conventional FDLB model, and also use a boundary fitted coordinates. The jet is chosen long enough in order to guarantee the parabolic velocity profile of the jet at the outlet, and the edge consists of a wedge with an angle of ${\alpha}=23^{\circ}$ . At a stand-off distance ${\omega}$ , the edge is inserted along the centreline of the jet, and a sinuous instability wave with real frequency f is assumed to be created in the vicinity of the nozzle and to propagate towards the downstream. We have succeeded in capturing very small pressure fluctuations result from periodically oscillation of jet around the edge. That pressure fluctuations propagate with the sound speed. Its interaction with the wedge produces an irrotational feedback field which, near the nozzle exit, is a periodic transverse flow producing the singularities at the nozzle lips.

  • PDF

차분격자볼츠만법에 의한 Edge음의 직접계산 (Direct Simulation of Edge Tones by the Finite Difference Lattice Boltzmann Method)

  • 강호근;김유택;이영호
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2003년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.671-677
    • /
    • 2003
  • Two-dimensional direct numerical simulation of the edge-tones by the finite difference lattice Boltzmann method (FDLBM) is presented. We use a new lattice BGK compressible fluid model that has an additional term and allow larger time increment comparing the conventional FDLBM, and also use a boundary fitted coordinates. We have succeeded in capturing very small pressure fluctuations result from periodically oscillation of jet around the edge. That pressure fluctuations propagate with the sound speed. It is clarified that the sound wave generated in rather wide region and individual vortices do not affect the sound wave propagation.

  • PDF

미소절삭에서의 절삭력 해석 (An Analysis of Cutting Force in Micromachining)

  • 김동식;강철희;곽윤근
    • 한국정밀공학회지
    • /
    • 제12권12호
    • /
    • pp.72-80
    • /
    • 1995
  • Ultraprecision machining technology has been playing a rapidly increasing and important role in manufacturing. However, the physics of the micromachining process at very small depth of cut, which is typically 1 .mu. m or less is not well understool. Shear along the shear plane and friction at the rake face dominate in conventional machining range. But sliding along the flank face of the tool due to the elastic recovery of the workpiece material and the effects of plowing due to the large effective negative rake angle resultant from the tool edge radius may become important in micromachining range. This paper suggests an orthogonal cutting model considering the cutting edge radius and then quantifies the effect of plowing due to the large effective negative rake angle.

  • PDF

CFD/CAA Hybrid 기법을 이용한 뒷전에서 음향파의 산란모사 (Simulation of Trailing Edge Scattering Using Linearized Euler Equations with Source terms)

  • 박용환;빈종훈;정철웅;이수갑
    • 한국항공우주학회지
    • /
    • 제33권7호
    • /
    • pp.18-25
    • /
    • 2005
  • 본 연구에서는 뒷전, 전단류와 초기교란의 상호작용에 의한 불안정파의 생성 기제의 분석과 뒷전 산란현상을 고차의 전산공력음향학을 이용하여 모사하였다. 수치적 알고리즘은 Hybrid 기법에 기초하였으며, Simple Linearized Euler Equation과 Full Linearized Euler Equation의 결과를 비교를 통해 정상류 구배항이 불안정파의 생성에 중요한 역할을 함을 볼 수 있었다. 또한 Full Navier-Stokes Equation을 이용한 결과와 비교함으로써, Full Linearized Euler Equation은 뒷전의 초기 근접장에서 불안정파를 해석하는데 있어서 Full Navier-Stokes Equation 보다 효율적임을 알 수 있다.

저속의 원형분류가 구멍에 충돌할 때 발생한 구멍음의 주파수특성에 관한 실험적 연구 (An Experimental Study on the Frequency Characteristics of Hole Tones Generated by a Circular Jet of Low Speed Impinging on a Plate with a Round Hole)

  • 이동훈
    • 한국생산제조학회지
    • /
    • 제6권2호
    • /
    • pp.34-41
    • /
    • 1997
  • The objective of this study is to investigate experimentally the frequency characteristics of the hole tones generated by a circular jet of low speed impinging on a plate with a round hole. The experimental results about the sound spectrum and the time wave of the hole tone are presented and discussed in relation with the hole type, the jet velocity and the distance of the nozzle-to-plate with a round hole. From the sound spectrum and time wave measurements, it is found that the hole tone is generated not only by an interaction of convected vortices with a round hole but also by a series of vortex shedding from jets passing through a hole. The hole tones generated by a feedback mechanism consist of many frequency stages and also have a hysteresis phenomenon like an edge tone. But the hole tones generated by a series of vortex shedding have nothing with the stage characteristics. The frequencies of hole tones are influenced by the jet velocity, the distance of the nozzle-to-plate with a round hole and the hole type.

  • PDF

쐐기소리의 되먹임 사이클의 위상조건 (Phase criterion of the feedback cycle of edgetones)

  • 권영필
    • 대한기계학회논문집B
    • /
    • 제20권3호
    • /
    • pp.1106-1113
    • /
    • 1996
  • The phase criterion of the feedback cycle of low-speed edgetones has been obtained using the jet-edge interaction model which is based on the substitution of an array of dipoles for the reaction of the wedge to the impinging jet. The edgetone is produced by the feedback loop between the downstream-convected sinuous disturbance and upstream-propagating waves generated by the impingement of the disturbance on the wedge. By estimation of the phase difference between the downstream and the upstream disturbances, the relationship between the edge distance and the wavelength is obtained according to the phase-locking condition at the nozzle lip. With a little variation depending on the characteristics of jet-edge interaction, the criterion can be approximated as follows: h/.LAMBDA. + h/.lambda. = n - 1/4, where h is the stand-off distance between the nozzle lip and the edge tip, .LAMBDA. is the wavelength of downstream-convected wave, .lambda. is the wavelength of the upstream-propagating acoustic wave and n is the stage number for the ladder-like characteristics of frequency. The present criterion has been confirmed by estimating wavelengths from available experimental data and investigating their appropriateness. The above criterion has been found to be effective up to 90.deg. of wedge angle corresponding to the cavitytones.

슬래브 두께에 따른 표준실험동의 중량충격음 특성 (Heavy-weight Floor Impact Sound Characteristics of Standard Laboratory by Slab Thickness)

  • 정영;송희수;전진용;김진수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.103-108
    • /
    • 2004
  • In this study, examined heavy-weight floor impact sound to structure that have slab thickness of 4 form at a standard laboratory through noise and vibration measured. The results show that the nature Natural frequency increased according to change of thickness of each slab by finite element analysis, and acceleration value decreased. Results of measurements of noise and vibration at a standard laboratory, the slab 210, 240mm structures was construed result such as finite element analysis but the slab 150, 180mm structures is construed that influence in vibration acceleration level because edge condition has condition that contact to ground. Therefore, in modelling process for analysis, is thought that need that condition analyzes examining element influencing about structure that contact to ground.

  • PDF

소형수조에서 음향재료의 반향음감소와 투과손실 측정시스템 구성 (Measurement System for Performance Evaluation of Acoustic Materials in a Small Water Tank)

  • 신미루;조정홍;이경택;김재수;전재진;함일배;강창기
    • 한국음향학회지
    • /
    • 제30권2호
    • /
    • pp.63-72
    • /
    • 2011
  • 본 논문은 반향음과 투과음을 감소시키기 위한 평판형 음향재료의 성능평가 장치를 제작하고 측정시스템을 구성하며 표준표적을 이용한 검증을 통해 신뢰성을 확보하는 데 목적이 있다. 반향음감소와 투과손실 측정은 신호간섭이 없도록 대형수조에서 실시되는 것이 일반적이지만, 본 논문에서는 신호간섭을 고려해야 하는 소형수조에서 최저 30 kHz까지 측정이 가능한 측정시스템을 구성하였다. 이를 위해 신호모의를 통해 신호간섭이 없는 최적의 기하학적 배치를 도출하였으며, 획득한 신호를 시간영역과 주파수영역의 총 네 가지 방법으로 ER과 TL을 도출하는 신호처리 알고리즘을 확립하였다. 마지막으로 대형수조에서의 전파손실 실측실험을 통해 측정시스템을 보정하고 알루미늄 판과 스티로폼을 표준표적으로 사용한 측정결과를 Brekhovskikh Layer Model과 비교하여 측정시스템 검증을 수행하였다.

음의 클리어런스를 갖는 AL6061-T6 포일 블랭킹의 유한요소해석 (Finite Element Analysis on Negative Clearance Blanking of AL6061-T6 Foil)

  • 송신형;최우천
    • 한국생산제조학회지
    • /
    • 제25권4호
    • /
    • pp.290-294
    • /
    • 2016
  • A finite element method (FEM) study was performed on micro-scale blanking of an AL6061-T6 foil with negative clearance. ABAQUS/explicit was used to prepare a simulation model of negative clearance blanking with tools having an edge radius comparable to the foil thickness. The Johnson-Cook plastic flow model was used in the simulations for the material flow. The FEM model was used to study the effects of various blanking parameters on the negative clearance blanking process and quality of the blank. In particular, the projecting edge on the bottom of the blank was observed. Research on negative blanking at the micro-scale is summarized and discussed.