• 제목/요약/키워드: Ectodomain shedding

검색결과 5건 처리시간 0.017초

Environment-Sensitive Ectodomain Shedding of Epithin/PRSS14 Increases Metastatic Potential of Breast Cancer Cells by Producing CCL2

  • Jang, Jiyoung;Cho, Eun Hye;Cho, Youngkyung;Ganzorig, Binderya;Kim, Ki Yeon;Kim, Moon Gyo;Kim, Chungho
    • Molecules and Cells
    • /
    • 제45권8호
    • /
    • pp.564-574
    • /
    • 2022
  • Epithin/PRSS14 is a membrane serine protease that plays a key role in tumor progression. The protease exists on the cell surface until its ectodomain shedding, which releases most of the extracellular domain. Previously, we showed that the remaining portion on the membrane undergoes intramembrane proteolysis, which results in the liberation of the intracellular domain and the intracellular domain-mediated gene expression. In this study, we investigated how the intramembrane proteolysis for the nuclear function is initiated. We observed that ectodomain shedding of epithin/PRSS14 in mouse breast cancer 4T1 cells increased depending on environmental conditions and was positively correlated with invasiveness of the cells and their proinvasive cytokine production. We identified selenite as an environmental factor that can induce ectodomain shedding of the protease and increase C-C motif chemokine ligand 2 (CCL2) secretion in an epithin/PRSS14-dependent manner. Additionally, by demonstrating that the expression of the intracellular domain of epithin/PRSS14 is sufficient to induce CCL2 secretion, we established that epithin/PRSS14-dependent shedding and its subsequent intramembrane proteolysis are responsible for the metastatic conversion of 4T1 cells under these conditions. Consequently, we propose that epithin/PRSS14 can act as an environment-sensing receptor that promotes cancer metastasis by liberating the intracellular domain bearing transcriptional activity under conditions promoting ectodomain shedding.

The ADAM15 ectodomain is shed from secretory exosomes

  • Lee, Hee Doo;Kim, Yeon Hyang;Koo, Bon-Hun;Kim, Doo-Sik
    • BMB Reports
    • /
    • 제48권5호
    • /
    • pp.277-282
    • /
    • 2015
  • We demonstrated previously that a disintegrin and metalloproteinase 15 (ADAM15) is released into the extracellular space as an exosomal component, and that ADAM15-rich exosomes have tumor suppressive functions. However, the suppressive mechanism of ADAM15-rich exosomes remains unclear. In this study, we show that the ADAM15 ectodomain is cleaved from released exosomes. This shedding process of the ADAM15 ectodomain was dramatically enhanced in conditioned ovarian cancer cell medium. Proteolytic cleavage was completely blocked by phenylmethylsulfonyl fluoride, indicating that a serine protease is responsible for exosomal ADAM15 shedding. Experimental evidence indicates that the ADAM15 ectodomain itself has comparable functions with those of ADAM15-rich exosomes, which effectively inhibit vitronectininduced cancer cell migration and activation of the MEK/extracellular regulated kinase signaling pathway. We present a tumor suppressive mechanism for ADAM15 exosomes and provide insight into the functional significance of exosomes that generate tumor-inhibitory factors. [BMB Reports 2015; 48(5): 277-282]

Inhibitory effects of oroxylin A on endothelial protein C receptor shedding in vitro and in vivo

  • Ku, Sae-Kwang;Han, Min-Su;Lee, Min Young;Lee, You-Mie;Bae, Jong-Sup
    • BMB Reports
    • /
    • 제47권6호
    • /
    • pp.336-341
    • /
    • 2014
  • Endothelial cell protein C receptor (EPCR) plays important roles in blood coagulation and inflammation. EPCR activity is markedly changed by ectodomain cleavage and release as the soluble EPCR. EPCR can be shed from the cell surface, which is mediated by tumor necrosis factor-${\alpha}$ converting enzyme (TACE). Oroxylin A (OroA), a major component of Scutellaria baicalensis Georgi, is known to exhibit anti-angiogenic, antiinflammation, and anti-invasive activities. However, little is known about the effects of OroA on EPCR shedding. Data showed that OroA induced potent inhibition of phorbol-12-myristate 13-acetate (PMA), tumor necrosis factor (TNF)-${\alpha}$, interleukin (IL)-$1{\beta}$ and on cecal ligation and puncture (CLP)-induced EPCR shedding through suppression of TACE expression and activity. In addition, treatment with OroA resulted in reduced PMA-stimulated phosphorylation of p38, extracellular regulated kinases (ERK) 1/2, and c-Jun N-terminal kinase (JNK). These results demonstrate the potential of OroA as an anti-sEPCR shedding reagent against PMA and CLP-mediated EPCR shedding.

Suppression of ADAM 10-induced Delta-1 Shedding Inhibits Cell Proliferation During the Chondro-Inhibitory Action of TGF-β3

  • Jin, Eun-Jung;Choi, Young-Ae;Sonn, Jong-Kyung;Kang, Shin-Sung
    • Molecules and Cells
    • /
    • 제24권1호
    • /
    • pp.139-147
    • /
    • 2007
  • Although transforming growth factors (TGFs) are implicated in the process of endochondral ossification, which is initiated by the differentiation of mesenchymal cells into chondrocytes, it is not clear how $TGF-{\beta}3$ regulates the chondrogenic differentiation of limb bud mesenchymal cells. Here, differential display polymerase chain reaction (DD-PCR) screening and RT-PCR analysis revealed that transcripts of A Disintegrin And Metalloprotease 10 (ADAM 10) decreased during the chondro-inhibitory action of $TGF-{\beta}3$ on cultured chick leg bud mesenchymal cells. Electroporation of ADAM 10 morpholino antisense oligonucleotides inhibited the ectodomain shedding of delta-1, and cell proliferation and subsequent precartilage condensation, in a manner similar to that caused by $TGF-{\beta}3$. The suppression of mesenchymal cell proliferation induced by $TGF-{\beta}3$ and ADAM 10 morpholino antisense oligonucleotides was reversed by activation of ADAM 10 with phorbol 12-myristate 13-acetate (PMA) or knockdown of Notch-1 with siRNA. Collectively, these data indicate that, in cultured chick leg bud mesenchyme cells, $TGF-{\beta}3$ downregulates ADAM 10 and inhibits cell proliferation and subsequent precartilage condensation by inhibiting the ectodomain shedding of delta-1, and that this results in the activation of Notch signaling.

In vitro와 in vivo에서 라이코펜이 EPCR 탈락에 미치는 영향 (Effects of Lycopene on Endothelial Protein C Receptor Shedding In Vitro and In Vivo)

  • 유하영;이현식;이원화;배종섭
    • 생명과학회지
    • /
    • 제23권5호
    • /
    • pp.650-656
    • /
    • 2013
  • 내피세포 단백질 C 수용체(EPCR)가 트롬빈-트롬보모듈린 복합체에 의한 단백질 C (PC) 활성 증가에 중요한 역할을 한다. EPCR의 활성은 ecodomain의 분열과 수용성 단백질(sEPCR)로 분비함으로써 현저하게 변화한다. EPCR의 탈락은 tumor necrosis factor-${\alpha}$ converting enzyme (TACE)에 의해 매개된다. 토마토에서 발견된 라이코펜은 항산화 효과, 항암 효과, 항염증 효과를 가지고 있다. 그러나 EPCR 탈락에서의 라이코펜의 효과는 알려지지 않았다. 우리는 라이코펜이 PMA, TNF-${\alpha}$, IL-$1{\beta}$와 CLP에 의해 유도된 EPCR 탈락에 미치는 영향을 연구했다. 그 결과, 라이코펜은 TACE의 발현을 억제시켜 PMA, TNF-${\alpha}$, IL-$1{\beta}$와 CLP에 의해 매개된 EPCR 탈락을 저해함을 보여준다. 또한 라이코펜은 PMA가 유발한 p38, ERK1/2, JNK의 인산화를 감소시켰다. 이러한 결과를 토대로, 라이코펜은 EPCR 탈락의 저해를 통해 다양한 중증 혈관 염증 질병 치료를 위한 후보 물질이 될 수 있을 것이다.