• Title/Summary/Keyword: Ecotoxicological test

Search Result 45, Processing Time 0.024 seconds

Ecotoxicological Characteristics of Gammarus sobaegensis Ueno by Acute and Chronic pH Depression on Artificial Static Waters (pH 저하가 소백옆새우(Gammarus sobaegensis Ueno)에 미치는 급, 만성 생태독성학적 특성 -1. 정체성 조건-)

  • Park, Jung-Ho;Cho, Dong-Hyun;Jung, Geun
    • Korean Journal of Environmental Biology
    • /
    • v.18 no.4
    • /
    • pp.377-385
    • /
    • 2000
  • This study was carried out to investigate the ecotoxicological response on Gammarus sobaegensis Ueno with acid stress. Mean value of $LT_{50}$ (lethal time 50%) under pH 3 condition as acute ecotoxicity test was observed to be 0.271 ($\pm$0.146) day. And 0.812 ($\pm$0.377) day under pH 4, respectively. Mean value of $LT_{50}$ under pH 3 and 5 were 6.313 ($\pm$0.828), and 9.475 ($\pm$4.881) day, respectively. Variance in chronic ecotoxicity test pH (F ratio: 11.240, P< 0.0005) and times (F ratio: 2.916, P< 0.0005) as single factor were revealed to be the major factor for determining LT$_{50}$ with acid depression. The variation of secondary gill surface with acid stress to be certain that wrinkle phenomenon. Being weak tolerance of G. sobaegensis against the acid stress, it shows the possibility to be examined as an aquatic toxicity test organism.

  • PDF

Marine Ecotoxicological Assessment Using the Nauplius of Marine Harpacticoid Copepod Tigriopus japonicus (저서성 해산 요각류 harpacticoid Tigriopus japonicus 유생을 이용한 해양생태독성평가)

  • Yoon Sung-Jin;Park Gyung-Soo;Oh Jeong-Hwan;Park Soung-Yun
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.9 no.3
    • /
    • pp.160-167
    • /
    • 2006
  • Harpacticoid copepod Tigriopus japonicus is widely distributed in coastal waters of Korea and plays important role in marine trophic structure as a first consumer. In this study, a series of experiment were conducted to test the potential of the species as a standard test species for marine bioassay. Tolerance on salinity and pH, sensitivity on the reference materials(copper sulfate and cadmium chloride) and response on the ocean dumping materials(waste sludge) we re tested to identify if the species satisfy the basic criteria as standard species for marine bioassay. The nauplius of the species($100{\sim}200{\mu}m$) showed wide tolerance on salinity with >90.0% survival rates exposed to $5.0{\sim}35.0psu$ for 48 h. Wide adaptability on pH's were also observed from 6.3 to 8.2 with >90.0% survival rates during the test. $LC_{50}$ values for copper sulfate and cadmium chloride were $3.6{\pm}0.7ppm,\;1.7{\pm}0.8ppm$, respectively. The variations in mortality between replicates were less than 10.0%. Comparison of $LC_{50}$ values indicated that T. japonicus nauplius was lower sensitive to copper sulfate than the most marine crustaceans included copepods, however, the sensitivity of test animal to cadmium chloride higher than the adults of copepod T. japonicus, Paracalanus parvus, and marine rotifer Brachinonus plicatilis. There were significant concentration-response relationship in the mortality of T. japonicus nauplius using the elutriates of three ocean dumping materials(industrial waste sludge). 48 h $LC_{50}$ values we re $31.1{\pm}1.1%$ for the elutriate of sludge from leather processing company and $54.4{\pm}15.1%$ for that of dye production company. Based on the above experimental results, bioassay using benthic harpacticoid T. japonicus nauplius must be a good estimation tool for marine ecotoxicological assessment of waste or chemicals. Wide tolerance on the salinity and pH, and significant linear relationship between concentration and response(mortality) supported the high potential of the species as a standard test species.

  • PDF

Toxicity Assessment of Heavy Metals in Shihwa Lake and Its Tributaries using the Algae (조류를 이용한 시화호 및 시화호 유입수 내 중금속 물질의 독성 평가 연구)

  • Woo, Minhui;Lee, Gyuyoung;Kim, Jihye;Lim, Jihyun;Lee, Yong-Woo
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.2
    • /
    • pp.171-177
    • /
    • 2012
  • This research investigates how using algae as an ecotoxicological test species is easier than using daphnia for identifying toxic causative substances. From the results of the ecotoxicity measurements on the Shihwa lake and its tributaries, heavy metals were considered as one of major factors in causing toxicity. The algae ecotoxicity value was 9.6 while the daphnia ecotoxicity value was 0.8 in the Jeongwang stream. By using algae as the test species, we could identify the toxicity that causes heavy metals which might otherwise have been missed with only daphnia. The results from the EDTA addition test showed that zinc and copper were the main toxic causative substances in the Jeongwang stream and Gunja stream.

Acute Toxicity of Heavy Metals, Tributyltin, Ammonia and Polycyclic Aromatic Hydrocarbons to Benthic Amphipod Grandidierella japonica

  • Lee, Jung-Suk;Lee, Kyu-Tae;Park, Gyung-Soo
    • Ocean Science Journal
    • /
    • v.40 no.2
    • /
    • pp.61-66
    • /
    • 2005
  • Benthic amphipod, Grandidierella japonica widely inhabits the Korean coastal waters and is developed as a standard test species for sediment toxicity tests. We exposed G. japonica to various pollutants including 4 kinds of inorganic metals (Ag, Cd, Cu and Hg), tributyltin [TBT], ammonia and 7 polycyclic aromatic hydrocarbon (PAH) compounds (acenaphthene, chrysene, fluoranthene, fluorene, naphthalene, phenanthrene and pyrene) to estimate the no observed effect concentration (NOEC) and the median lethal concentration (LC50) of each pollutant during the 96-hour acute exposure. Among all tested pollutants, TBT was most toxic to G. japonica, and Rg was most toxic among inorganic metals. The toxicity of pyrene to G. japonica was greatest among PAH compounds, followed by fluoranthene, phenanathrene, acenaphthene, fluorene and naphthalene. The toxicity of PAH compounds was closely related to their physico-chemical characteristics such as $K_ow$ and water solubility. G. japonica responded adequately to pollutant concentrations and exposure durations, and the sensitivity of G. japonica to various inorganic and organic pollutants was generally comparable to other amphipods used as standard test species in ecotoxicological studies, indicating this species can be applied in the assessment of environments polluted by various harmful substances.

A Preliminary Study for Development of a Bioassay Protocol Using the Sperm of a Starfish, Asterias amurensis

  • Ryu, Tae-Kwon;Lee, Chang-Hoon;Park, Jin-Woo
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.10a
    • /
    • pp.158-158
    • /
    • 2003
  • Bioassays using gametes of sea urchins are widely used in ecotoxicological assessments of marine environments. Since most of sea urchin species in Korean coastal water spawn from spring to autumn, bioassay with them during the winter is impossible. In the course of developing standard methods for bioassays with Korean species, we found a winter-spawning starfish, Asterias amurensis, Since reproductive mode of asteroids is similar to echinoids, the bioassay protocol for sea urchins could be applied similarly to the starfish. Here, we tested and determined several conditions for the acceptability of bioassay with A. amurensis. The least required time for formation of fertilization membrane of fertilized eggs to be easily distinguished from unfertilized ones was 60 min. The threshold of sperm to egg ratio that could make acceptable fertilization rates in controls was 3000. The allowed time for manipulation of sperm after dilution in seawater was at most 3 hr. The optimal exposure time of sperms when the response against toxicant solution was relatively stable was in the range of 20-60 min. The tolerance range of sperms to the salinity of test solution was 26-38 psu. The sensitivity of A. amurensis sperm was intermediate among marine organisms commonly used in aquatic toxicity tests. The sperm bioassay with A. amurensis can be satisfactorily applied to toxicity assessments of marine environments.

  • PDF

Acute Toxicity of Carassius auratus and Pungtungia herzi Lavra on Mercury, Lead and Copper Exposure (수은, 납 및 구리에 대한 붕어(Carassius auratus)와 돌고기(Pungtungia herzi) 자어의 급성독성)

  • Cho, Kyu-Seok;Park, Jong-Ho;Kang, Ju-Chan
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.3
    • /
    • pp.265-268
    • /
    • 2004
  • Larva of Carassius auratus and Pungtungia herzi were exposed to mercury ($HgCl_2$), lead ($PbCl_2$) and copper ($CuSO_4$) to determine acute toxicity. The toxicity tests were conducted triplicate and the $LC_{50}$ values (24, 48, 72 and 96 hours) were determined for two species. Data obtained from the toxicity tests were evaluated using the probit analysis. Although sensitivities of two species to mercury were relatively similar, C. auratus was more susceptible than P. herzi to the exposure of lead but P. herzi was more sensitive than C. auratus on copper. The sensitivity on three metals tested may be ranked in the following order from highest to lowest toxicity on larval stage of these fish: mercury > copper > lead. It is suggested that acute toxic test at the larval stage of C. auratus and P. herzi, indigenous species in Asia area, is an important part of the ecotoxicological assessment of some heavy metals.

Ecotoxicological End-points on Intertidal Mud Crab, Macrophthalmus japonicus, following PFOS (Perfluorooctane Sulfonate) Exposure (PFOS (perfluorooctane sulfonate) 노출에 따른 조간대 칠게(Macrophthalmus japonicus)의 생태독성학적 판정점 제시)

  • Kim, Won-Seok;Park, Kiyun;Nikapitiya, Chamilani;Kwak, Ihn-Sil
    • Korean Journal of Environmental Biology
    • /
    • v.32 no.4
    • /
    • pp.311-318
    • /
    • 2014
  • PFOS (perfluorooctane sulfonate) is one of the perflourinated organic compound, which persist as a residual compound in the coastal environments. Intertidal mud crab Macrophthalmus japonicus mainly inhabits in coastal and bay ecosystems in Indo-Pacific region including Korea and reflects to environmental changes. In the present study, M. japonicus were exposed to different concentrations of PFOS and various ecotoxicological end-points such as survival rate, elimination of appendages, changes of the crust and internal organ color changes were investigated. Interestingly, the PFOS exposure showed concentration-dependent decrease of survival rate. High PFOS exposure ($30{\mu}gL^{-1}$) showed a low survival rate of 24% at 168 hours. Further, in comparison with the controls, the rate of elimination of appendages was also considerably increased in a time dependent manner upon PFOS exposure. Notably, with progression of time, an increased exposure to PFOS, test species showed whitening effect in a concentration-dependent manner, whereas the crab crust color was unchanged in the control. In addition, change in internal organs color and their visibility (clarity) observed in PFOS exposed crabs compared to control. Taken together, we suggest, eco-toxicology end-points of M. japonicus exposed to PFOS gave important biological information which could be useful to identify toxic contamination in the marine benthic environments.

Ecotoxicological Effects of the Increased Suspended Solids on Marine Benthic Organisms (부유물질증가에 따른 저서성 해양생물의 독성평가에 관한 연구)

  • Yoon, Sung-Jin;Park, Gyung-Soo
    • Journal of Environmental Science International
    • /
    • v.20 no.11
    • /
    • pp.1383-1394
    • /
    • 2011
  • Environmental impacts of suspended solids (SS) released in coastal area by dredging, reclamation and construction can cause serious damages to coastal habitats and benthic organisms. Acute toxicity tests (4-7 days) were conducted to identify the relationship between SS concentration and mortality of three marine benthic species; benthic copepod (Tigriopus japonicus) adult, Pacific abalone (Haliotis discus hannai) spat, and olive flounder (Paralichthys olivaceus) fry. Benthic copepod was the most sensitive to SS followed by olive flounder fry and Pacific abalone spat, with an $LC_{50}$ (lethal concentration of 50% mortality) value of 61.0 mg/L and LOEC (lowest observed effective concentration) value of 31.3 mg/L for benthic copepod. LOEC and 7 day-$LC_{50}$ for Pacific abalone spat were 500.0 mg/L and 1887.7 mg/L, and those for olive flounder fry were 125.0 mg/L and 156.9 mg/L, respectively. The tolerance limits of the test species to SS revealed the various concentration ranges of SS, which reflects the physiology and ecology of the test species. These results are very valuable for the determination of SS concentration of effluents released into the coastal area by dredging, reclamation and construction etc. Also, sharp increase of SS can cause long-term damages to the benthic and sessile fauna by blanketing of benthic substratum. These experimental procedures for marine bioassay and acute toxicity results can be a useful guideline for practical management planning of SS discharge into coastal area.

Acute Toxicity Evaluation to Daphnia magna of Disease Resistant(OsCK1) Rice (병저항성 GM(OsCK1)벼의 물벼룩(Daphnia magna)에 대한 급성독성 평가)

  • Oh, Sung-Dug;Lee, Kijong;Park, Soo-Yun;Ryu, Tae-Hun;Suh, Sang Jae
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.2
    • /
    • pp.121-128
    • /
    • 2014
  • BACKGROUND: The disease resistant (OsCK1) rice was generated by inserting choline kinase (CK1) and phosphinothricin acetyltransferase (PAT) genes isolated from Oryza sativa and Streptomyces hygroscopicus into the genome of the rice, Nakdongbyeo. With the potential problems of safeties, the evaluations on non-target organisms are essentially required for the environmental risk assessment of genetically modified (GM) crops. In the present study, we conducted the evaluation of acute toxicity on Daphnia magna that commonly used as a model organism in ecotoxicological studies for non-target organism evaluation. METHODS AND RESULTS: Effect of acute toxicity to Daphnia magna by each concentration were investigated in the disease resistant (OsCK1) rice and non-genetically modified (non-GM) rice, Nakdongbyeo, as concentration (0, 1,000, 1,800, 3,240, 5,830, 10,500 and 20,000 mg/L). The OsCK1 rice used for the test was confirmed to express the OsCK1/PAT gene by the PCR(Polymerase chain reaction) and western blot analysis. Feeding test showed that no significant differences in cumulative immobility and abnormal response of Daphnia magna fed on OsCK1 rice or non-GM rice. The 48hr-$EC_{50}$ values showed no difference between OsCK1 rice (3,147.18 mg/L) and non-GM rice (3,596.27 mg/L). CONCLUSION: This result suggested that there was no significant difference in toxicity to Daphnia magna between OsCK1 rice and non-GM counterpart.

Comparative Study on the Characteristics of Microalgae as Standard Species for Marine Ecotoxicity Tests (Skeletonema sp., Dunaliella tertiolecta) (해양생태독성시험 표준생물로서 미세조류의 특성 비교 연구(Skeletonema sp., Dunaliella tertiolecta))

  • Kim, Tae Won;Moon, Chang Ho;Lee, Su Jin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.5
    • /
    • pp.514-522
    • /
    • 2020
  • To understand the ecotoxicological differences between representative Skeletonema sp. and Dunaliella tertiolecta, both producers as international standard test species for marine ecotoxicity testing, we compared each standard test method, and comparatively analyzed the suitability of the species for environmental assessment and their sensitivity to various test substances. Although most of the test conditions were the same in each method, there were differences in limitation of pH changing and the initial inoculation density in the validation criteria, which is supposed to originate from the low growth rate of D. tertiolecta. In terms of suitability, both species showed consistency in test performance by repeatedly meeting the validation criteria required by the standard test methods. The salinity ranges available for testing were 20 and 10 psu for Skeletonema sp. and D. tertioelecta, respectively. Finally, regarding sensitivity, the toxicity sensitivity of Skeletonema sp. was relatively higher than that of D. tertiolecta for the reference toxicant, actual polluted water discharged (ballast water), and other chemicals. This implies that using at least two species of microalgae from different classification groups could help increase the reliability and objectivity of test results in the performance of marine ecotoxicity tests using producers.