• Title/Summary/Keyword: Ecosystem metabolism

Search Result 37, Processing Time 0.025 seconds

Contamination of Sediments and Histological Alterations in Barfin Plaice Pleuronectes pinnifasciatus from Amursky Bay(Peter the Great Bay, East Sea/Sea of Japan)

  • Vaschenko Marina A.;Syasina Iraida G.;Durkina Valentina B.;Zhadan Petr M.
    • Ocean and Polar Research
    • /
    • v.25 no.1
    • /
    • pp.31-40
    • /
    • 2003
  • In August-September 2001, 15 samples of bottom sediments were collected in the inner, middle and open parts of Amursky Bay near Vladivostok, Russia, and barfin plaice Pleuronectes pinnifasciatus was sampled from the inner and the middle locations of the bay. In the sediments from all three sites elevated concentrations of several heavy metals, i.e. Zn ($102-115{\mu}/g$ dry weight), Ni $(70-73{\mu}g/g)$ and Cu $(27-35{\mu}g/g)$ were discovered. The contents of oil hydrocarbons were very close to or slightly higher than the maximal normal environmental background level, $100{\mu}g/g$ dry weight. The sediments contained negligible amounts of hexachlorocyclohexane, while DDT concentrations were quite high (1.7-16.3ng/g dry weight). Generally, there were no substantial differences in the pollution levels of the locations studied and our results resembled those reported for Amursky Bay in the 1990s. Surprisingly, in 2001 'fiesh' DDT comprised 70-85% of the total DDT content in sediment from all the locations studied. In fish liver total DDTs concentrations were 212.8 and 122.54 ng/g wet weight for the inner and the middle locations, respectively, and 'fresh' DDT comprised 35 and 64% of DDTs, respectively. These results provide evidence of recent input of DDT from an unknown source into the ecosystem of Amursky Bay. Histopathological changes revealed in the plaice liver (vacuolization of hepatocytes, coagulative necrosis of hepatocytes, inflammatory reaction, and necrosis of epithelial cells of bile ducts) are probably connected with an intensive metabolism of DDT in the fish organism. No histological and histomorphometric differences were found in the state of the interrenal tissue. Similar condition of the liver and the interrenal tissue in barfin plaice sampled from the inner and the middle locations of Amursky Bay may be explained by the absence of great differences in the pollution levels of these sites.

Spatial Distribution of Urban Heat Island based on Local Climate Zone of Automatic Weather Station in Seoul Metropolitan Area (자동기상관측소의 국지기후대에 근거한 서울 도시 열섬의 공간 분포)

  • Hong, Je-Woo;Hong, Jinkyu;Lee, Seong-Eun;Lee, Jaewon
    • Atmosphere
    • /
    • v.23 no.4
    • /
    • pp.413-424
    • /
    • 2013
  • Urban Heat Island (UHI) intensity is one of vital parameters in studying urban boundary layer meteorology as well as urban planning. Because the UHI intensity is defined as air temperature difference between urban and rural sites, an objective sites selection criterion is necessary for proper quantification of the spatial variations of the UHI intensity. This study quantified the UHI intensity and its spatial pattern, and then analyzed their connections with urban structure and metabolism in Seoul metropolitan area where many kinds of land use and land cover types coexist. In this study, screen-level temperature data in non-precipitation day conditions observed from 29 automatic weather stations (AWS) in Seoul were analyzed to delineate the characteristics of UHI. For quality control of the data, gap test, limit test, and step test based on guideline of World Meteorological Organization were conducted. After classifying all stations by their own local climatological properties, UHI intensity and diurnal temperature range (DTR) are calculated, and then their seasonal patterns are discussed. Maximum UHI intensity was $4.3^{\circ}C$ in autumn and minimum was $3.6^{\circ}C$ in spring. Maximum DTR appeared in autumn as $3.8^{\circ}C$, but minimum was $2.3^{\circ}C$ in summer. UHI intensity and DTR showed large variations with different local climate zones. Despite limited information on accuracy and exposure errors of the automatic weather stations, the observed data from AWS network represented theoretical UHI intensities with difference local climate zone in Seoul.

The exceptionally large genome of the harmful red tide dinoflagellate Cochlodinium polykrikoides Margalef (Dinophyceae): determination by flow cytometry

  • Hong, Hyun-Hee;Lee, Hyun-Gwan;Jo, Jihoon;Kim, Hye Mi;Kim, Su-Man;Park, Jae Yeon;Jeon, Chang Bum;Kang, Hyung-Sik;Park, Myung Gil;Park, Chungoo;Kim, Kwang Young
    • ALGAE
    • /
    • v.31 no.4
    • /
    • pp.373-378
    • /
    • 2016
  • Cochlodinium polykrikoides is a red-tide forming dinoflagellate that causes significant worldwide impacts on aquaculture industries and the marine ecosystem. There have been extensive studies on managing and preventing C. polykrikoides blooms, but it has been difficult to identify an effective method to control the bloom development. There is also limited genome information on the molecular mechanisms involved in its various ecophysiology and metabolism processes. Thus, comprehensive genome information is required to better understand harmful algal blooms caused by C. polykrikoides. We estimated the C. polykrikoides genome size using flow cytometry, with detection of the fluorescence of DNA stained with propidium iodide (PI). The nuclear genome size of C. polykrikoides was 100.97 Gb, as calculated by comparing its mean fluorescence intensity (MFI) to the MFI of Mus musculus, which is 2.8 Gb. The exceptionally large genome size of C. polykrikoides might indicate its complex physiological and metabolic characteristics. Our optimized protocol for estimating the nuclear genome size of a dinoflagellate using flow cytometry with PI can be applied in studies of other marine organisms.

Changes of Fatty Acid composition During Dispecific culture of Scrippsiella trochoidea a Dinoflagellate and Pseudomonas spp. marine Bacteria (적조와편모조 Scrippsiella trochoidea와 해양세균 Pseudomonas spp.의 동시배양 시 지반산 조성의 변화)

  • 임월애;김학균
    • 한국해양학회지
    • /
    • v.28 no.3
    • /
    • pp.186-191
    • /
    • 1993
  • Scrippsiella trochoidea is a dinoflagellate responsible for red tide in early spring in southern coastal water. Marine bacteria appear to exert critical roles on the development and decay of phytoplankton bloom in marine ecosystem. It is likely that marine bacteria, Pseudomonas spp., share some metabolic processes with S. trochoidea. To investigate interactions between S. trochoidea and Pseudomonas spp. directly, cysts of S. trochoidea isolated from the bottom mud in Masan Bay have been germinated and cultured. From the S. trochoidea cultured medium, we have isolated Pseudomonas spp., a dominant and cultured. From the S. trochoidea cultured medium, we have isolated Pseudomonas spp., a dominant species. Both of Pseudomonas spp. and S trochoidea have been simultaneously inoculated into the sterilized sea water and cultured to examine the change of fatty acids. The major fatty acids that showed increases in composition during the dispecific culture were $C_{18:0/},{\;}C_{20:5}{\;}and{\;}C_{22:5}$ in S. trochoidea, and in Pseudomonas spp. Especially, $C_{20:5}{\;}and{\;}C_{18:0}$ were increased in S. trochoidea but decreased in Pseudomonas spp. These results strongly suggest that two species share some processes in their fatty acid metabolism.

  • PDF

A STUDY ON THE FRACTIONAL INHIBITORY CONCENTRATION(FIC) INDEX OF COMBINATIONS OF ANTICARIOGENIC AGENTS (항우식작용을 갖는 여러 항균물질의 조합에 따른 분할 저해 농도(FIC ; Fractional inhibitory concentration) 지수에 대한 연구)

  • Kim, Young-Jae;Kim, Chong-Chul;Kim, Kack-Kyun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.29 no.4
    • /
    • pp.625-631
    • /
    • 2002
  • The effect of combinations of 8 antimicrobial agents on the growth of Streptococcus mutans and Streptococcus sobrinus was investigated with the minimum inhibitory concentration and fractional inhibitory concentration(FIC) and ${\Sigma}FIC$ index. According to the ${\Sigma}FIC$ values by. The American Society for Microbiology and Berenbaum, Approximately 34% and 82% of the combinations were synergistic respectively. Partial synergy described by Isenberg was also observed in the half of the combinations. There was a tendency for additive antimicrobial effect against cariogenic bacteria though the test results showed difference according to the applied values. It may be beneficial to use combined antimicrobial agents that have various activities against an ecosystem and metabolism of bacteria than using individual agents.

  • PDF

EFFECT OF XYLITOL ON BINDING OF ORAL BACTERIA TO SALIVA-COATED SURFACES (Xylitol이 구강세균의 부착에 미치는 영향에 관한 연구)

  • Choi, Hye-Jin;Choi, Ho-Young
    • Restorative Dentistry and Endodontics
    • /
    • v.22 no.1
    • /
    • pp.170-180
    • /
    • 1997
  • Cariogenicity of the bacteria is attributed to their binding capacity to the teeth. Bacterial attachment to oral surfaces is an essential step for colonization and subsequently infection. Therefore, it is conceivable that caries prevention can be achieved fundamentally by inhibition of bacterial attachment. The rationale for caries prevention through the use of sugar substitutes or limited use of sugar has been revealed. Among many sugar substitutes, xylitol has been shown to exhibit the most profound cariostatic effect, inhibiting glucose metabolism and possibly binding of mutans streptococci. The purpose of this study was to examine the effect of xylitol on binding of different species of oral bacteria. The effect of xylitol on binding of [$^3H$]-labeled oral bacteria to hydroxyapatite coated with human saliva(SHA) as a model for the pellicle-coated tooth surfaces was investigated. The strains of oral bacteria used in this study were A. viscosus T14V, A. viscosus WVU627, P. gingivaiis 2561, P. gingivalis A7Al-28, S. gordonii G9B, S. gordonii Challis, S. sobrinus 6715, S. mutans UA101, S. mutans KPSK -2, S. mutans T8, and S. mutans UA130. The obtained results were as follows: 1. P. gingivalis A7 Al-28, S. mutans UA130, S. mutans T8 grown with xylitol showed greater binding to SHA than the organism grown without xylitol. Among these, S. mutans T8 showed the greatest rate of increase in its binding to SHA ; 8-fold increase in its binding with xylitol. 2. S. mutans KPSK -2 grown with xylitol showed 2 times lesser binding to SHA than the organism grown without xylitol. 3. Binding ability of the remaining strains grown with xylitol to SHA was almost same as that of the organisms grown without xylitol. The overall results suggest that use of xylitol in the oral cavity may affect the complex oral bacterial ecosystem.

  • PDF

Molecular/biochemical Biomarkers for Exposure to Hazardous Chemicals in the Water Environment and their Application to Freshwater Fish (유해물질 노출로 인한 분자.생화학적 바이오마커와 담수 어류에 대한 현장 적용성)

  • Kim, Jung-Kon;Park, Ye-Na;Kim, Woo-Keun;Kim, Ji-Won;Lee, Sung-Kyu;Choi, Kyung-Ho
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.5
    • /
    • pp.418-434
    • /
    • 2010
  • As concerns regarding water pollution grow, the need increases for a fast and accurate assessment of ecological risk. In this context, many studies have been conducted to identify biomarkers which can sensitively indicate exposure to and effects of various contaminants in a water environment. However, the utility of most such biomarkers in the real water environment is not yet validated. In this paper, we conducted a thorough review of publications that were related to developing or evaluating molecular and biochemical biomarkers of freshwater fish in ecological risk assessment, and evaluated whether these biomarkers of interest could link to the effects on higher biological levels, such as histopathology and above. Biomarkers of interest included those associated with metabolism, oxidative stress, reproduction and endocrine disruption, genotoxicity, and defense against heavy metal exposure. We found that, when used alone, most molecular and biochemical biomarkers are not sufficient to understand the effects of toxic substances in higher biological levels, due to defense or acclimation mechanisms of organisms. Moreover, some biomarkers respond not only to hazardous substances but also to the changes in water quality and disease outbreak. Molecular and biochemical biomarkers may be most useful in understanding the potential biological effects of toxic compounds when used in parallel with relevant endpoints of higher biological levels.

Bacterial Exopolysaccharides: Insight into Their Role in Plant Abiotic Stress Tolerance

  • Bhagat, Neeta;Raghav, Meenu;Dubey, Sonali;Bedi, Namita
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.8
    • /
    • pp.1045-1059
    • /
    • 2021
  • Various abiotic stressors like drought, salinity, temperature, and heavy metals are major environmental stresses that affect agricultural productivity and crop yields all over the world. Continuous changes in climatic conditions put selective pressure on the microbial ecosystem to produce exopolysaccharides. Apart from soil aggregation, exopolysaccharide (EPS) production also helps in increasing water permeability, nutrient uptake by roots, soil stability, soil fertility, plant biomass, chlorophyll content, root and shoot length, and surface area of leaves while also helping maintain metabolic and physiological activities during drought stress. EPS-producing microbes can impart salt tolerance to plants by binding to sodium ions in the soil and preventing these ions from reaching the stem, thereby decreasing sodium absorption from the soil and increasing nutrient uptake by the roots. Biofilm formation in high-salinity soils increases cell viability, enhances soil fertility, and promotes plant growth and development. The third environmental stressor is presence of heavy metals in the soil due to improper industrial waste disposal practices that are toxic for plants. EPS production by soil bacteria can result in the biomineralization of metal ions, thereby imparting metal stress tolerance to plants. Finally, high temperatures can also affect agricultural productivity by decreasing plant metabolism, seedling growth, and seed germination. The present review discusses the role of exopolysaccharide-producing plant growth-promoting bacteria in modulating plant growth and development in plants and alleviating extreme abiotic stress condition. The review suggests exploring the potential of EPS-producing bacteria for multiple abiotic stress management strategies.

A report of 20 unrecorded bacterial species isolated from the coastal area of Korean islands in 2022

  • Hyerim Cho;Yeonjung Lim;Sumin Kim;Hyunyoung Jo;Mirae Kim;Jang-Cheon Cho
    • Journal of Species Research
    • /
    • v.12 no.2
    • /
    • pp.165-173
    • /
    • 2023
  • Bacterial communities inhabiting islands play a vital role in the functioning and formation of a unique, isolated ecosystem. Nevertheless, there has been a lack of systematic research on the indigenous microbiological resources of the islands in Korea. To excavate microbial resources for further studies on the metabolism and biotechnological potential, a standard dilution plating was applied to coastal seawater samples collected from islands along the west coast of the Korean Peninsula, including Deokjeokdo, Baengnyeongdo, and Daebudo in 2022. A total of 2,007 bacterial strains were isolated from the samples as single colonies and identified using 16S rRNA gene sequence analyses. A total of 20 strains, with ≥98.7% 16S rRNA gene sequence similarity to bacterial species having validly published names but not reported in Korea, were designated as unrecorded bacterial species in Korea. The unrecorded bacterial strains were phylogenetically diverse and belonged to four phyla, five classes, 12 orders, 17 families, and 18 genera. The unreported species were assigned to Algimonas, Amylibacter, Notoacmeibacter, Roseibium, and Terasakiella of the class Alphaproteobacteria; Alteromonas, Congregibacter, Marinagarivorans, Marinicella, Oceanospirillum, Psychromonas, Thalassotalea, Umboniibacter, and Vibrio of the class Gammaproteobacteria; Lutibacter and Owenweeksia of the class Flavobacteriia; Paenibacillus of the class Bacilli; and Pelagicoccus of the class Opitutae. The taxonomic characteristics of the unreported species, including morphology, biochemistry, and phylogenetic position are provided in detail.

Relationship between Water Temperature and Oxygen Consumption Rate of the Black Scraper Thamnaconus modestus (말쥐치, Thamnaconus modestus의 산소소비율과 수온의 관계)

  • Lee, Jung-Ah;Lee, Jae Seong;Kim, Ji-Hye;Myoung, Jung-Goo;Oh, Sung-Yong;Kang, Rae-Seon
    • Ocean and Polar Research
    • /
    • v.36 no.1
    • /
    • pp.39-47
    • /
    • 2014
  • The black scraper Thamnaconus modestus was a commercially important fish species in the 1980s, but suddenly its commercial significance decreased in the 1990s mainly due to continuous overfishing. Recently, in order to reverse the depleted stocks of the black scraper and help the species recover, seed production technology has emerged. This has led to the farming of the black scraper in several parts of the southern coast of Korea. Since detailed research on its metabolism in relation to water temperature has been scanty, this was the investigative focus of the present study. The standard metabolism rates of the black scraper (9-10 months old, total length=$22.6{\pm}0.8cm$, wet weight=$140.3{\pm}13.9g$) were measured at seven different water temperature settings (12, 15, 17, 20, 23, 26, $28^{\circ}C$) to understand the relationship between metabolism and water temperature. Relationships between water temperature (WT) and oxygen consumption rate (OCR) were obtained as SOCR (weight-specific oxygen consumption rate) = 0.0117WT - 0.0135 ($r^2=0.9351$) and IOCR (oxygen consumption rate per individual) = 1.8160WT - 5.4007 ($r^2$ = 9428). The $Q_{10}$ (temperature sensitivity), an indicator of the sensitivity of biological function to temperature, was analyzed. In our experiment, when the water temperature increased, the $Q_{10}$ value decreased. The $Q_{10}$ value was 6.27 in waters where the temperature ranged from $12-15^{\circ}C$ and this was much higher than the values obtained in waters where temperatures ranged between (1) $15-23^{\circ}C$ and (2) $23-28^{\circ}C$. Consequently, it was shown that the black scraper is a warm water species and inhabiting waters in the temperature range from $15-28^{\circ}C$ is deemed appropriate.