• Title/Summary/Keyword: Economic Water Allocation

Search Result 30, Processing Time 0.033 seconds

An Optimal Conjunctive Operation of Water Transmission Systems from Multiple Sources with applying EPAnet and KModSim Model (KModSim 모형(模型)에 의한 도시지역(都市地域) 다중수원(多衆水源) 송수관망간(送水管網間) 최적(最適) 연계(連繫) 운영(運營) 연구(硏究))

  • Ryu, Tae-Sang;Cheong, Tae-Sung;Ko, Ick-Hwan;Ha, Sung-Ryong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.500-504
    • /
    • 2008
  • The objective of this paper is to evaluate the feasibility of using an optimization model as a effective way to search conjunctive operation scheme to meet two conditions; one is to minimize the electric cost for pumping and another is to meet the water demand for satisfying customers. The feasibility is confirmed as comparing the best combinations of pumps between multi-regional water supply networks from multiple sources which are obtained through an optimization modeling and EPAnet modeling. KModsim model, a network optimization model, was used to determine conjunctive operation scheme in the pipe system. KModsim, based on Lagrangian Relaxation algorithm, is useful for modeling network system and obtaining simultaneously pump combination and water allocation with given input option such as energy unit cost supplying from a source into a consumer, operating pumping combination. This study develops the procedure of determining optimal conjunctive operation scheme with using KModsim model. As a study region, the water supplying systems of the Geojae-city in the Geongsang Namdo Province was selected and investigated. The EPAnet hydraulic simulation result(Ryu et al, 2007, KSWW) gave input data for optimization model; energy unit price(won/$m^3$), water service available area etc.. It was assured that the combination of pump operation through optimum conjunctive operation is to be optimum scheme to obtain the best economic water allocation with comparison to the hydraulic simulation result such as electric cost and pump combination cases. The results obtained through the study are as follows. First, It was found that a well-allocated water supply scheme, the best combination of pump operation through optimum joint operation, promises to save the electric cost and satisfy all operational goals such as stability and revenues during the period. Second, an application of KModSim, a network model, gave the amount of water allocation from each source to a consumer with consideration of economic supply. Finally, in a service area available to supply through conjunctive operation of existing inter-regional water supply networks within short distance, a conjunctive operation is useful for determining each transmission pipeline's service area and maximizing the effectiveness of optimizations in pumping operation time.

  • PDF

Optimization of multi-water resources in economical and sustainable way satisfying different water requirements for the water security of an area

  • Gnawali, Kapil;Han, KukHeon;Koo, KangMin;Yum, KyungTaek;Jun, Kyung Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.161-161
    • /
    • 2019
  • Water security issues, stimulated by increasing population and changing climate, are growing and pausing major challenges for water resources managers around the world. Proper utilization, management and distribution of all available water resources is key to sustainable development for achieving water security To alleviate the water shortage, most of the current research on multi-sources combined water supplies depends on an overall generalization of regional water supply systems, which are seldom broken down into the detail required to address specific research objectives. This paper proposes the concept of optimization framework on multi water sources selection. A multi-objective water allocation model with four objective functions is introduced in this paper. Harmony search algorithm is employed to solve the applied model. The objective functions addresses the economic, environmental, and social factors that must be considered for achieving a sustainable water allocation to solve the issue of water security.

  • PDF

Recent Trend for the Application of Total Economic Value (TEV) Estimation to Groundwater Resources (지하수자원의 경제적 가치 평가 적용과 관련한 최근동향)

  • Song, Sung-Ho;White, Paul;Zemansky, Gil
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.2
    • /
    • pp.1-6
    • /
    • 2012
  • Total Economic Value (TEV) provides a framework to estimate the economic value of water resources including groundwater with multiple applications to natural resource economics and environmental economics. Crucial to the application of economic analysis to natural resources are techniques to value the resources as an economic value that is expressed in monetary terms. On the other hand, the aim of TEV estimation is to determine the economic value of water resources including 'use' with production and recreation and 'non-use' such as existence values. TEV is used to assess the economic value of water resources for the multiple goods, and environmental 'services' that are provided by a water resource and also used to assess options for water use, for example balancing production values provided by water resource use against the cost of resource degradation by that use. The value of TEV can be assessed over time where pollution or unsustainable use may reduce the economic value of an environmental asset. Therefore, values are used to assess options of resource use, sometimes leading to policies on resource conservation or allocation. In conclusion, the application of TEV would be well adjusted over Jeju Island where groundwater resources account for more than 98% water resources and the budget of water demand/supply shows disparity over the Island.

Decision Making for Priority of Water Allocation during Drought by Analytic Hierarchy Process (계층분석과정(AHP)에 의한 가뭄시 용수배분 우선순위 위사 결정)

  • Lee, Hyun-Jae;Shim, Myung-Pil
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.6
    • /
    • pp.703-714
    • /
    • 2002
  • During drought, there have been a number of conflicts because of the limited and insufficient water to allocate for the numerous water users. To solve the problems, the decision on the priority of water use should be made with social rationality A rational and systematic procedure needs to be implemented in order to decide the priority of water use. First, a criteria level is made of the main and detailed drought impacts which come from the economic, environmental, and social aspects. Four alternatives are then identified for priority of water use. Second, survey to the two group(professional, residents) has been done with using pair wise comparisons. Finally, the relative weights and the priority of alternatives are determined by means of the Analytic Hierarchy Process(AHP) which is one of the Multi-Attributed Decision Method(MADM). By using AHP, it has been concluded that the water allocation during drought should be accomplished in order of domestic, irrigation, industrial, and river maintenance water. If the AHP method were improved for inconsistency which may be generated with survey analysis, a number of applications will be used for the solutions of problem in water resources systems.

Production planning in fish farm (어류양식장 생산계획에 관한 연구)

  • EH, Youn-Yang
    • The Journal of Fisheries Business Administration
    • /
    • v.46 no.3
    • /
    • pp.129-141
    • /
    • 2015
  • Because land based aquaculture is restricted by high investment per rearing volume and control cost, good management planning is important in Land-based aquaculture system case. In this paper master production planning was made to decide the number of rearing, production schedule and efficient allocation of water resources considering biological and economic condition. The purpose of this article is to build the mathematical decision making model that finds the value of decision variable to maximize profit under the constraints. Stocking and harvesting decisions that are made by master production planning are affected by the price system, feed cost, labour cost, power cost and investment cost. To solve the proposed mathematical model, heuristic search algorithm is proposed. The model Input variables are (1) the fish price (2) the fish growth rate (3) critical standing corp (4) labour cost (5) power cost (6) feed coefficient (7) fixed cost. The model outputs are (1) number of rearing fish (2) sales price (3) efficient allocation of water pool.

Study on the Layout of Water Diversion Projects Influenced by China's Macro Developing Strategies

  • Peng, Xiang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.59-66
    • /
    • 2008
  • A country's macro developing strategies will greatly impose upon its water resources allocation. Based upon the relationship between national macro developing strategies and water diversion projects layout, the paper discusses the vital influence of water diversion projects caused by China's food security and sustainable development strategy implemented in recent years, and points out that it is an inevitable choice of constructing inter-basin water diversion projects in north China in view of local water resources can't meet the demand of socio-economic development and eco-environment protection, and then recommends China's water diversion projects layout in the current and future, which attaching most importance to the South-to-North Water Diversion Project.

  • PDF

Developing a comprehensive model of the optimal exploitation of dam reservoir by combining a fuzzy-logic based decision-making approach and the young's bilateral bargaining model

  • M.J. Shirangi;H. Babazadeh;E. Shirangi;A. Saremi
    • Membrane and Water Treatment
    • /
    • v.14 no.2
    • /
    • pp.65-76
    • /
    • 2023
  • Given the limited water resources and the presence of multiple decision makers with different and usually conflicting objectives in the exploitation of water resources systems, especially dam's reservoirs; therefore, the decision to determine the optimal allocation of reservoir water among decision-makers and stakeholders is a difficult task. In this study, by combining a fuzzy VIKOR technique or fuzzy multi-criteria decision making (FMCDM) and the Young's bilateral bargaining model, a new method was developed to determine the optimal quantitative and qualitative water allocation of dam's reservoir water with the aim of increasing the utility of decision makers and stakeholders and reducing the conflicts among them. In this study, by identifying the stakeholders involved in the exploitation of the dam reservoir and determining their utility, the optimal points on trade-off curve with quantitative and qualitative objectives presented by Mojarabi et al. (2019) were ranked based on the quantitative and qualitative criteria, and economic, social and environmental factors using the fuzzy VIKOR technique. In the proposed method, the weights of the criteria were determined by each decision maker using the entropy method. The results of a fuzzy decision-making method demonstrated that the Young's bilateral bargaining model was developed to determine the point agreed between the decisions makers on the trade-off curve. In the proposed method, (a) the opinions of decision makers and stakeholders were considered according to different criteria in the exploitation of the dam reservoir, (b) because the decision makers considered the different factors in addition to quantitative and qualitative criteria, they were willing to participate in bargaining and reconsider their ideals, (c) due to the use of a fuzzy-logic based decision-making approach and considering different criteria, the utility of all decision makers was close to each other and the scope of bargaining became smaller, leading to an increase in the possibility of reaching an agreement in a shorter time period using game theory and (d) all qualitative judgments without considering explicitness of the decision makers were applied to the model using the fuzzy logic. The results of using the proposed method for the optimal exploitation of Iran's 15-Khordad dam reservoir over a 30-year period (1968-1997) showed the possibility of the agreement on the water allocation of the monthly total dissolved solids (TDS)=1,490 mg/L considering the different factors based on the opinions of decision makers and reducing conflicts among them.

Setting limits for water use in the Wairarapa Valley, New Zealand

  • Mike, Thompson
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.227-227
    • /
    • 2015
  • The Wairarapa Valley occupies a predominantly rural area in the lower North Island of New Zealand. It supports a mix of intensive farming (dairy), dry stock farming (sheep and beef cattle) and horticulture (including wine grapes). The valley floor is traversed by the Ruamahanga River, the largest river in the Wellington region with a total catchment area of 3,430 km2. Environmental, cultural and recreational values associated with this Ruamahanga River are very high. The alluvial gravel and sand aquifers of the Wairarapa Valley, support productive groundwater aquifers at depths of up to 100 metres below ground while the Ruamahanga River and its tributaries present a further source of water for users. Water is allocated to users via resource consents by Greater Wellington Regional Council (GWRC). With intensifying land use, demand from the surface and groundwater resources of the Wairarapa Valley has increased substantially in recent times and careful management is needed to ensure values are maintained. This paper describes the approach being taken to manage water resources in the Wairarapa Valley and redefine appropriate limits of sustainable water use. There are three key parts: Quantifying the groundwater resource. A FEFLOW numerical groundwater flow model was developed by GWRC. This modelling phase provided a much improved understanding of aquifer recharge and abstraction processes. It also began to reveal the extent of hydraulic connection between aquifer and river systems and the importance of moving towards an integrated (conjunctive) approach to allocating water. Development of a conjunctive management framework. The FEFLOW model was used to quantify the stream flow depletion impacts of a range of groundwater abstraction scenarios. From this, three abstraction categories (A, B and C) that describe diminishing degrees of hydraulic connection between ground and surface water resources were mapped in 3 dimensions across the Valley. Interim allocation limits have been defined for each of 17 discrete management units within the valley based on both local scale aquifer recharge and stream flow depletion criteria but also cumulative impacts at the valley-wide scale. These allocation limits are to be further refined into agreed final limits through a community-led decision making process. Community involvement in the limit setting process. Historically in New Zealand, limits for sustainable resource use have been established primarily on the basis of 'hard science' and the decision making process has been driven by regional councils. Community involvement in limit setting processes has been through consultation rather than active participation. Recent legislation in the form of a National Policy Statement on Freshwater Management (2011) is reforming this approach. In particular, collaborative consensus-based decision making with active engagement from stakeholders is now expected. With this in mind, a committee of Wairarapa local people with a wide range of backgrounds was established in 2014. The role of this committee is to make final recommendations about resource use limits (including allocation of water) that reflect the aspirations of the communities they represent. To assist the committee in taking a holistic view it is intended that the existing numerical groundwater flow models will be coupled with with surface flow, contaminant transport, biological and economic models. This will provide the basis for assessing the likely outcomes of a range of future land use and resource limit scenarios.

  • PDF

Productivity of Aquaculture Facility Utilization (양식장 이용에 따른 생산성에 관한 연구)

  • Eh, Youn-Yang
    • The Journal of Fisheries Business Administration
    • /
    • v.45 no.2
    • /
    • pp.85-95
    • /
    • 2014
  • Fish stocking is important element of land-based aquaculture management. To maintain constant stocking rate considering biological and economic condition is a convenient strategy in intensive aquaculture. This study is aimed to analyze the effect of over-stocking(more than aquaculture capacity) for certain periods of time. This study make the mathematical decision making model that finds the value of decision variable to minimize cost that sums up the water pool usage cost and sorting cost under critical standing corp constraint. The proposed mathematical decision making model was applied to 12 sample combination of sorting cost and the number of fish on the Oliver flounder culture farms. If a immature fish can be sold for high price than farming cost, restricted over-stocking resulted in a improvement of economic performance. When extensive comparable biological and market data become available, analysis model can be widely applied to yield more accurate results.

Integrated Management of Sewerage Facilities in Upstream Watersheds of Multi-purpose Dams - Focusing on Management of a Technical Support Team (댐상류 하수도시설의 통합운영관리방안에 관한 연구(I) - 통합관리전문기술지원단의 운영방안에 대하여 -)

  • Park, Kyoo-Hong;Kim, Hyung-Joon;Ahn, Choon-Hee;Choi, Joo-Hang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.1
    • /
    • pp.23-29
    • /
    • 2011
  • Integrated management system (IMS) for sewerage facilities has been installed at 7 dams and 9 watersheds since 2006. However, there has been no decisive plan on how and who to manage efficiently IMS after finishing the construction. Therefore, in this study, it was suggested that a new organization, so to speak, a technical support team for integrated management that may operate and manage IMS efficiently, could need to be set up. Three scenarios were evaluated depending on the type of allocating human resources to new organization considering each levels of sewerage facilities. Economic analyses on each scenarios of human resources allocation were also carried out. As a result, establishing the technical support team for integrated management was estimated to give the net benefit from 1.3 billion to 20.6 billion won for 15 years.