• Title/Summary/Keyword: Economic Scale

Search Result 1,959, Processing Time 0.03 seconds

A Study of Useability of Ecosystem Service Assessment on Strategic Environmental Assessment (전략환경영향평가 시 생태계서비스 평가 결과의 활용가능성에 관한 연구)

  • Park, Yoon-Sun;Kim, Choong-Ki;Lee, Who-Seung
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.2
    • /
    • pp.115-126
    • /
    • 2021
  • Strategic Environmental Impact Assessment (SEA) is a decision-making process taking into account the environmental impact, economic and social impact of policies, plans, and programs at the higher stage prior to the project plan for promoting sustainable development. In this study, we analyzed the process and criteria for selecting appropriate alternatives when establishing development plan in SEA. First, the criteria for estimating changes in ecosystem services following the implementation of development project of industrial complex were presented. Second, alternative evaluations were conducted through an analysis of ecosystem service scenarios to explore suitable alternatives in Anseong. As a result, the environmental quality of selected area as the existing project site deteriorated according to the implementation of the project, and the dimensional reduction technique confirmed that the change in ecosystem service factors in project area was the optimal location. In addition, the results of the scenario assessment to explore suitable alternatives in Anseong City showed that the existing site had large capacity in terms of water quality control services (scenario 1), scenario 2 in terms of preconditioning services, and scenario 3 in terms of water supply services. The guidance of Ecosystem service assessment is expected to be available in decision-making of large-scale strategies (e.g., SEA) and projects by presenting more quantitative criteria for determining the adequacy and location feasibility of development plans and policy plans. This is expected to require various support, including legislation and revision of related laws, believed to be supported by advanced research.

Research on the Surface Improvement of High Soft Ground Using Calibration Chamber Test (모형토조실험에 의한 초연약지반의 표층개량에 관한 연구)

  • Bang, Seongtaek;Yeon, Yongheum
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.5
    • /
    • pp.39-46
    • /
    • 2019
  • Most of the soil used for reclamation is marine clay generated from dredging construction.The soft ground made of dredged clay has high water content and high compressibility, so the bearing capacity of the ground is very weak and it is difficult to enter the ground improvement equipment. Therefore, surface hardening treatment method is used to enter equipment prior to full-scale civil engineering work, and stabilizer is mainly used for cement series. Cement-based stabilizers have the advantage of improving the ground in a short period of time and have excellent economic efficiency, but they are disadvantageous in that they cause environmental problems due to leaching of heavy metals such as hexavalent chromium. In this study, environmental effects evaluation of dredged clay mixed with normal portland cement and environmentally friendly stabilizer was evaluated, and uniaxial compressive strength test and indoor model test were conducted to confirm the bearing capacity characteristics of the solidified layer.

Feasibility of Combined Heat and Power Plant based on Fuel Cells using Biogas from Macroalgal Biomass (거대조류 바이오매스로부터 생산된 바이오가스를 사용하는 연료전지 기반 열병합발전의 타당성 검토)

  • Liu, Jay
    • Clean Technology
    • /
    • v.24 no.4
    • /
    • pp.357-364
    • /
    • 2018
  • Studies on the production of biogas from third generation biomass, such as micro- and macroalgae, have been conducted through experiments of various scales. In this paper, we investigated the feasibility of commercialization of integrated combined heat and power (CHP) production using biogas derived from macroalgae, i.e., seaweed biomass. For this purpose, an integrated CHP plant of industrial scale, consisting of solid oxide fuel cells, gas turbine and organic Rankine cycle, was designed and simulated using a commercial process simulator. The cost of each equipment in the plant was estimated through the calculated heat and mass balances from simulation and then the techno-economic analysis was performed. The designed integrated CHP process produces 68.4 MW of power using $36ton\;h^{-1}$ of biogas from $62.5ton\;h^{-1}$ (dry basis) of brown algae. Based on these results, various scenarios were evaluated economically and the levelized electricity cost (LEC) was calculated. When the lifetime of SOFC is 5 years and its stack price is $$225kW^{-1}$, the LEC was 12.26 ¢ $kWh^{-1}$, which is comparable to the conventional fixed power generation.

Bridging Research and Extension Gaps of Paddy Yield in Andhra Pradesh, India

  • Kumar, K. Nirmal Ravi
    • Agribusiness and Information Management
    • /
    • v.10 no.1
    • /
    • pp.1-15
    • /
    • 2018
  • Many paddy cultivating farmers in the country are forced to use their limited resources to produce adequate food for their family, leading to the degradation and reduction in potential of these resources. The yield levels of paddy at the farmers' level and in the Front Line Demonstrations (FLDs) conducted in the farmers' fields is not at par with potential yield of the paddy variety. The gap between potential yield of crop variety and yield realized in FLDs refers to Research gap and the yield gap between FLDs and due to farmers' practice refers to Extension gap. The earlier studies conducted in India in general and in Andhra Pradesh in particular highlighted the existence of both research and extension gaps with reference to paddy. It is essential that, the narrowing of both research and extension gaps is not static, but dynamic considering the influence of technological interventions in boosting paddy yields at FLDs level and at farmers' level and also with the improvement of the yield potential of paddy varieties. This calls for integrated and holistic approaches to address these two gaps and with this background, the researcher aimed at this in depth study. The findings revealed that, research gaps are high with reference to weed management and pest management and extension gaps are high with reference to farm mechanization followed by fertilizer management. Reliable source of seed, capital use and frequency of meetings with Scientists or Agricultural Officers significantly influence the extension gaps in paddy. Farmers also prioritized socio-economic and technical constraints and the analysis infers that, it is high time now for the farmers to adopt the planned technological interventions on scientific scale to minimize the extension gaps to the extent possible. As the enabling environment in the State of Andhra Pradesh is highly encouraging for the farmers with relevant policy instruments in the form of subsidized inputs, free power, credit at concessional rates of interest, constructing irrigation projects etc., the adoption of the proposed technological interventions significantly contribute to minimizing both research and extension gaps in paddy cultivation in Kurnool district of Andhra Pradesh.

Hydrogen Sulfide Removal in Full-scale Landfill Gas Using Leachate and Chelated Iron (침출수 및 철킬레이트를 이용한 실규모 매립가스 내 황화수소 제거)

  • Park, Jong-Hun;Kim, Sang-Hyoun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.2
    • /
    • pp.51-56
    • /
    • 2019
  • $H_2S$ is a detrimental impurity that must be removed for upgrading biogas to biomethane. This study investigates an economic method to mitigate $H_2S$ content, combining scrubbing and aeration. The desulfurization experiments were performed in a laboratory apparatus using EDTA-Fe or landfill leachate as the catalyst and metered mixture of 50-52% (v/v) $CH_4$, 32-33% (v/v) $CO_2$ and 500-1,000 ppmv $H_2S$ balanced by $N_2$ using the C city landfill gas. Dissolved iron concentration in the liquid medium significantly affected the oxidation efficiency of sulfide. Iron components in landfill leachate, which would be available in a biogas/landfill gas utilization facility, was compatible with an external iron chelate. More than 70% of $H_2S$ was removed in a contact time of 9 seconds at iron levels at or over 28 mM. The scrubbing-aeration process would be a feasible and easy-to-operate technology for biogas purification.

Improvement Model of Defect Information Management System for Apartment Buildings (공동주택에 대한 하자정보 관리시스템의 개선 모델)

  • Kang, Hyunwook;Park, Yangho;Kim, Yongsu
    • Korean Journal of Construction Engineering and Management
    • /
    • v.20 no.4
    • /
    • pp.13-21
    • /
    • 2019
  • The purpose of this study is to suggest an Improvement Model of defect information management system. The improvement model adapts methods for the residents to input defect information correctly and share to defect information with construction company. The adapted research method is review for existing defect information management system and suggested for data flow diagram of improvement model. The results of this study are as follows: The basic design of the information input window of the defect information management system for connecting with big data was made. And 5 point scale was applied to evaluate the convenience, simplicity, accuracy, necessity, and usability of the improvement model. It is evaluated that the economic effect caused by using the improvement model is saved by about 151 million KRW compared to the existing method. The Improvement model is used utilize big data in correct defect management and decision making.

Analysis Of Childcare Policy From a Caring Democracy Perspective ('돌봄민주주의' 관점에서 본 보육정책)

  • Baek, Kyungheun;Song, Dayoung;Jang, Soojung
    • Korean Journal of Family Social Work
    • /
    • no.57
    • /
    • pp.183-215
    • /
    • 2017
  • This study analyzes Korean childcare policy from a caring democracy perspective by using the normative policy analysis method. In the midst of emergent new social risks engendered by low fertility and aging population, feminist scholars proposed a transformative paradigm shift from economic growth to caring oriented development on a macro scale but researches on how this grand principle can be reflected into each policy have hardly been discussed. Thus, this study intends to contribute to such policy-driven discussion by analysing childcare policy on the basis of three normative values of freedom, equality and justice re-interpreted by caring democracy theory. Following are key findings. First, childcare policy does not guarantee public value and social solidarity due to the limitations of free choice from the perspective of freedom. Secondly, gender and class stratification has been worsened in a multiple and more complicated way by adding generational and racial dimensions to the existing gender inequality and vicious circulation of private care is observed from equality perspective. Thirdly, structural inequality aggravated injustice previously accumulated in the past rather than providing flat ground by adjustment.

Research Trend on Conversion Reaction Anodes for Sodium-ion Batteries (나트륨이차전지용 전환반응 음극 소재 기술 동향)

  • Kim, Suji;Kim, You Jin;Ryu, Won-Hee
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.1
    • /
    • pp.22-35
    • /
    • 2019
  • Development of low cost rechargeable batteries has been considered as a significant task for future large-scale energy storage units (i.e. electric vehicles, smart grids). Sodium-ion batteries (SIBs) have been recognized as a promising alternative to replace conventional lithium-ion batteries (LIBs) because of their abundancy and economic benign. Nevertheless, Na ions have larger ionic radius than that of Li ions, resulting in sluggish transport of Na ions in electrodes for cell operation. There have been efforts to seek suitable anode materials for the past years operated based on three different kinds of reaction mechanism (intercalation, alloy reaction, and conversion reaction). In this review, we introduce a class of conversion reaction anode materials for Na-ion batteries, which have been reported.

Data Acquisition and Statistical Processing of Insulation Resistance for High-Power Cables in Operation (운전 중 고전력 케이블의 절연저항 데이터의 취득과 통계적 처리 방법)

  • Park, Sung-Hee;Um, Kee-Hong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.6
    • /
    • pp.181-186
    • /
    • 2018
  • With progress in industrialization, facilities for generating, delivering, and receiving high levels of electric power are in great demand. The scale of electric power equipment is increasing in both size and complexity. This has contributed to the development of our modern, high-tech and information-based society. However, if the generation of electric power is suspended due to unexpected accidents at power facilities or power stations, a range of equipment the operations of which are dependent on electric power can be damaged, causing substantial socioeconomic losses in an industrial society. A great deal of time and money would be expended to repair damaged facilities at a power station, causing enormous economic loss. In order to detect the deterioration processes of power cables, and to prevent the destruction of power cables, the operation status of power cables should be monitored on a regular basis. We studied the method in order to improve accuracy and reliability for diagnosising the junction where accident occurs frequently. We present the method of data acquisition and statistical processing.

SOx and NOx removal performance by a wet-pulse discharge complex system (습식-펄스방전 복합시스템의 황산화물 및 질소산화물 제거성능 특성)

  • Park, Hyunjin;Lee, Whanyoung;Park, Munlye;Noh, Hakjae;You, Junggu;Han, Bangwoo;Hong, Keejung
    • Particle and aerosol research
    • /
    • v.15 no.1
    • /
    • pp.1-13
    • /
    • 2019
  • Current desulfurization and denitrification technologies have reached a considerable level in terms of reduction efficiency. However, when compared with the simultaneous reduction technology, the individual reduction technologies have issues such as economic disadvantages due to the difficulty to scale-up apparatus, secondary pollution from wastewater/waste during the treatment process, requirement of large facilities for post-treatment, and increased installation costs. Therefore, it is necessary to enable practical application of simultaneous SOx and NOx treatment technologies to remove two or more contaminants in one process. The present study analyzes a technology capable of maintaining simultaneous treatment of SOx and NOx even at low temperatures due to the electrochemically generated strong oxidation of the wet-pulse complex system. This system also reduces unreacted residual gas and secondary products through the wet scrubbing process. It addresses common problems of the existing fuel gas treatment methods such as SDR, SCR, and activated carbon adsorption (i.e., low treatment efficiency, expensive maintenance cost, large installation area, and energy loss). Experiments were performed with varying variables such as pulse voltage, reaction temperature, chemicals and additives ratios, liquid/gas ratio, structure of the aeration cleaning nozzle, and gas inlet concentration. The performance of individual and complex processes using the wet-pulse discharge reaction were analyzed and compared.