• 제목/요약/키워드: Economic Evaluations

검색결과 174건 처리시간 0.023초

Estimation of Genetic Variance and Covariance Components for Litter Size and Litter Weight in Danish Landrace Swine Using a Multivariate Mixed Model

  • Wang, C.D.;Lee, C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제12권7호
    • /
    • pp.1015-1018
    • /
    • 1999
  • Single trait mixed models have been dominantly utilized for genetic evaluation of the reproductive traits in swine. However employing multiple trait approach may lead to more accurate genetic evaluations. For 5 litter size and litter weight traits of Danish Landrace, genetic parameters were estimated with a multiple trait mixed model. The heritability estimates were 0.02, 0.03, 0.03, 0.05, and 0.07, respectively for litter size at birth, litter size born alive, litter weight at birth, litter size at weaning, and litter weight at weaning. Negative genetic correlations were all positive. The litter weight at birth showed genetic antagonism with litter size born alive (-0.65) and litter size at weaning (-0.31), but positive with litter size at birth (0.47) and litter weight at weaning (0.31). The estimates of environmental correlations were larger than their corresponding genetic correlation estimates except for those between litter weight at birth and the other four traits. This study recommends simultaneous selection for two or more traits with multivariate mixed models in order to improve overall economic response.

비선형 점성유체의 다상유동 모형을 이용한 토석류 전산해석 (NUMERICAL SIMULATION OF DEBRIS FLOW USING MULTIPHASE AND NON-NEWTONIAN FLUID MODEL)

  • 이승수;황규관
    • 한국전산유체공학회지
    • /
    • 제22권1호
    • /
    • pp.95-102
    • /
    • 2017
  • Debris flow is a composition of solid objects of various sizes, suspension and water, which occurs frequently as the results of landslide following heavy rainfall. This often causes extensive damage in the form of socio-economic losses and casualties as witnessed during the incident around Mt. Umyeon, Seoul in 2011. There have been numerous investigation to mitigate the impacts from debris flow; however, the estimation as preparedness measure has not been successful due to nonlinear and multiphase characteristics of phenomena both in material and process inherent in the debris flow. This study presents a numerical approach to simulate the debris flow using open source code of computational fluid dynamics, OpenFOAM with non-Newtonian viscosity model for three phase material modeling. In order to validate the proposed numerical method, the quantitative evaluations were made by comparisons with experimental results and qualitative analysis for the dispersion characteristics was carried for the case of debris flow in the actual incident from Mt. Umyeon.

Improvement and Backsliding after Chronic-disease Self-management Education in Japan: One-year Cohort Study

  • Park, Min Jeong
    • 재활간호학회지
    • /
    • 제20권1호
    • /
    • pp.42-51
    • /
    • 2017
  • Purpose: In people who have chronic diseases, disabilities, and rehabilitation needs, self-management education can improve health and health-related behavior, and it can reduce the utilization of healthcare services. The purpose of this research was to assess the long-term effects of chronic-disease self-management education in Japan. Methods: This study included 184 adults living with various chronic medical conditions who participated in the Chronic Disease Self-Management Program (CDSMP) in Japan. Data were collected before the program began, and then collected 3 more times over 1 year. Results: Healthcare-service utilization was low at baseline, and it did not change. Self-evaluated health status, health-related distress, coping with symptoms, communication with doctors, and self-efficacy to manage symptoms all improved after the program. However, there was backsliding in all of the outcomes that had improved. Conclusion: Some benefits of this program can last for at least 1 year, but interventions to prevent attenuation may be needed. For economic evaluations, research should focus on populations with higher baseline levels healthcare-service utilization, including use of rehabilitation services. Also, more attention should be focused on the longer-term decay or persistence of the program's benefits, particularly regarding on preventing and reducing disabilities and with regard to rehabilitation needs.

AC모터드라이브 라인필터의 축소화를 위한 신형 하이브리드고조파필터 제안 (A Proposal of New Hybrid Passive Harmonic Filter for AC Motor Drive Line Filter Size Reduction)

  • 박병주;윤동철;오정철;배병열;황안일;유항규;최석근
    • 전기학회논문지P
    • /
    • 제67권1호
    • /
    • pp.1-8
    • /
    • 2018
  • ACL and DCL are have been conventionally used for reducing harmonic current on the input side of an ACMD. The current distortion ratio ITHD using ACL and DCL is only 35% to 85%, therefore to satisfy the IEEE Std. 519 requirements, the line filters has been focused as an alternative means. Those are installed between the AC power supply and the input of the ACMD, and must meet the IEEE Std. 519, be economical and be compact. To contribute to the widespread of using these line filters, we discussed concerning its topologies, simulation results, prototype test results as well as the cost evaluations. It included not only the proposed (NHHF) new hybrid harmonic filters which have both merits of simplicity and economic but also the past (BBHF) broadband harmonic filters and (HHF) hybrid harmonic filters.

원심다익송풍기의 고효율 설계를 위한 수치최적설계 (Numerical Optimization of A Multi-Blades Centrifugal Fan For High-Efficiency Design)

  • 서성진;김광용
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2003년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.385-390
    • /
    • 2003
  • Shape of a multi-blades centrifugal fan is optimized by response surface method based on three-dimensional Navier-Stokes analysis. For numerical analysis, Reynolds-averaged Wavier-Stokes equations with standard $k-{\varepsilon}$ turbulence model are transformed into non-orthogonal curvilinear coordinate system, and are discretized with finite volume approximations. Due to the large number of blades in this centrifugal fan, the flow inside of the fan is regarded as steady flow by introducing the impeller force models for economic calculations. Optimizations with and without constraints are carried out. Design variables, location of cur off, radius of cut off, expansion angle of scroll and width of impeller were selected to optimize the shapes of scroll and blades. Data points for response evaluations were selected by D-optimal design, and linear programming method was used for the optimization on the response surface. As a main result of the optimization, the efficiency was successfully improved. The correlation of efficiency with relative size of inactive zone at the exit of impeller is discussed as well as with average momentum fluxes in the scroll.

  • PDF

H2-MHR PRE-CONCEPTUAL DESIGN SUMMARY FOR HYDROGEN PRODUCTION

  • Richards, Matt;Shenoy, Arkal
    • Nuclear Engineering and Technology
    • /
    • 제39권1호
    • /
    • pp.1-8
    • /
    • 2007
  • Hydrogen and electricity are expected to dominate the world energy system in the long term. The world currently consumes about 50 million metric tons of hydrogen per year, with the bulk of it being consumed by the chemical and refining industries. The demand for hydrogen is expected to increase, especially if the U.S. and other countries shift their energy usage towards a hydrogen economy, with hydrogen consumed as an energy commodity by the transportation, residential and commercial sectors. However, there is strong motivation to not use fossil fuels in the future as a feedstock for hydrogen production, because the greenhouse gas carbon dioxide is a byproduct and fossil fuel prices are expected to increase significantly. An advanced reactor technology receiving considerable international interest for both electricity and hydrogen production, is the modular helium reactor (MHR), which is a passively safe concept that has evolved from earlier high-temperature gas-cooled reactor (HTGR) designs. For hydrogen production, this concept is referred to as the H2-MHR. Two different hydrogen production technologies are being investigated for the H2-MHR; an advanced sulfur-iodine (SI) thermochemical water splitting process and high-temperature electrolysis (HTE). This paper describes pre-conceptual design descriptions and economic evaluations of full-scale, nth-of-a-kind SI-Based and HTE-Based H2-MHR plants. Hydrogen production costs for both types of plants are estimated to be approximately $2 per kilogram.

영농형 태양광 발전 시스템 구축 및 활성화 방안 연구 (Building an Agrophotovoltaic System and Suggesting Activation Plans)

  • 조영혁;조석진;권혁수;유동희
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제28권1호
    • /
    • pp.115-132
    • /
    • 2019
  • Purpose The purpose of this study is to explain the agrophotovolatic system built by the Korea South-East Power Company and to propose methods to activate the agrophotovolatic system for the development of the renewable energy industry. Design/methodology/approach We conducted a three-step simulation in order to design a photovoltaic module, and we built the agrophotovolatic system based on the results of the simulation. Then, we analyzed the monthly generation of power and the rice harvests produced on farmland using the photovoltaic module. Based on the results of the analysis, we proposed institutional improvements to increase the use of the agrophotovolatic system, and we proposed new business models to increase the participation of farmers and business persons. Findings When we compared the agrophotovolastic system with the general photovoltaic system, we found that the agrophotovoltaic system had higher utilization rates and power generation. An analysis of rice produced on farmland using the photovoltaic module showed that more than 80% of the rice produced on general farmland was harvested. We suggested activation plans that involved the revision of the farmland law and the introduction of renewable energy certificate (REC). We also proposed a land lease model and a farmer participation model as two new business models, and we conducted economic evaluations and sensitivity analyses for both models.

A novel risk assessment approach for data center structures

  • Cicek, Kubilay;Sari, Ali
    • Earthquakes and Structures
    • /
    • 제19권6호
    • /
    • pp.471-484
    • /
    • 2020
  • Previous earthquakes show that, structural safety evaluations should include the evaluation of nonstructural components. Failure of nonstructural components can affect the operational capacity of critical facilities, such as hospitals and fire stations, which can cause an increase in number of deaths. Additionally, failure of nonstructural components may result in economic, architectural, and historical losses of community. Accelerations and random vibrations must be under the predefined limitations in structures with high technological equipment, data centers in this case. Failure of server equipment and anchored server racks are investigated in this study. A probabilistic study is completed for a low-rise rigid sample structure. The structure is investigated in two versions, (i) conventional fixed-based structure and (ii) with a base isolation system. Seismic hazard assessment is completed for the selected site. Monte Carlo simulations are generated with selected parameters. Uncertainties in both structural parameters and mechanical properties of isolation system are included in simulations. Anchorage failure and vibration failures are investigated. Different methods to generate fragility curves are used. The site-specific annual hazard curve is used to generate risk curves for two different structures. A risk matrix is proposed for the design of data centers. Results show that base isolation systems reduce the failure probability significantly in higher floors. It was also understood that, base isolation systems are highly sensitive to earthquake characteristics rather than variability in structural and mechanical properties, in terms of accelerations. Another outcome is that code-provided anchorage failure limitations are more vulnerable than the random vibration failure limitations of server equipment.

Electrochemical corrosion study on base metals used in nuclear power plants in the HyBRID process for chemical decontamination

  • Kim, Sung-Wook;Park, Sang-Yoon;Roh, Chang-Hyun;Shim, Ji-Hyung;Kim, Sun-Byeong
    • Nuclear Engineering and Technology
    • /
    • 제54권6호
    • /
    • pp.2329-2333
    • /
    • 2022
  • Base metal corrosion forms a significant issue during the chemical decontamination of the primary coolant loop in nuclear power plants as it is directly related to the economic and safety viability of decommissioning. In this technical note, potentiodynamic evaluations of several base metals (304 stainless steel, SA106 Grade B carbon steel, and alloy 600) were performed to determine their corrosion behavior during the hydrazine (N2H4)-based reductive ion decontamination (HyBRID) process. The results suggested that N2H4 protected the surface of the base metals in the HyBRID solution, which is primarily composed of H2SO4. The corrosion resistance of the carbon steel was further improved through the addition of CuSO4 to the solution. The corrosion rate of carbon steel in the H2SO4-N2H4-CuSO4 solution was lower than that exhibited in an oxalic acid solution, a commonly used reaction medium during commercial decontamination processes. These results indicate the superiority of the HyBRID process with respect to the base metal stability.

Development of Semiconductor Packaging Technology using Dicing Die Attach Film

  • Keunhoi, Kim;Kyoung Min, Kim;Tae Hyun, Kim;Yeeun, Na
    • 센서학회지
    • /
    • 제31권6호
    • /
    • pp.361-365
    • /
    • 2022
  • Advanced packaging demands are driven by the need for dense integration systems. Consequently, stacked packaging technology has been proposed instead of reducing the ultra-fine patterns to secure economic feasibility. This study proposed an effective packaging process technology for semiconductor devices using a 9-inch dicing die attach film (DDAF), wherein the die attach and dicing films were combined. The process involved three steps: tape lamination, dicing, and bonding. Following the grinding of a silicon wafer, the tape lamination process was conducted, and the DDAF was arranged. Subsequently, a silicon wafer attached to the DDAF was separated into dies employing a blade dicing process with a two-step cut. Thereafter, one separated die was bonded with the other die as a substrate at 130 ℃ for 2 s under a pressure of 2 kgf and the chip was hardened at 120 ℃ for 30 min under a pressure of 10 kPa to remove air bubbles within the DAF. Finally, a curing process was conducted at 175 ℃ for 2 h at atmospheric pressure. Upon completing the manufacturing processes, external inspections, cross-sectional analyses, and thermal stability evaluations were conducted to confirm the optimality of the proposed technology for application of the DDAF. In particular, the shear strength test was evaluated to obtain an average of 9,905 Pa from 17 samples. Consequently, a 3D integration packaging process using DDAF is expected to be utilized as an advanced packaging technology with high reliability.