• Title/Summary/Keyword: Econometric

Search Result 267, Processing Time 0.025 seconds

The Chilling Trade Effects of Provisional Anti-dumping Duties: The Case of Korea

  • Sun, Joo Yeon
    • Journal of Korea Trade
    • /
    • v.24 no.3
    • /
    • pp.1-19
    • /
    • 2020
  • Purpose - This study empirically analyzes the effects of provisional anti-dumping duties levied on imports by Korea following anti-dumping investigations. An anti-dumping duty is a legal tool that countries use to impose duties on imports to offset injurious dumping. This study verifies how effective the imposition of a provisional anti-dumping duty is and whether such duties have trade chilling effects on aggregate imports. Specifically, this study examines import trade diversion from named to unnamed countries caused by the imposition of provisional anti-dumping duties. Design/methodology - This empirical analysis employs an econometric model of provisional anti-dumping measures for cases in which Korea imposed final affirmative anti-dumping measures. We construct a monthly panel dataset for each stage of anti-dumping investigation undertaken by Korea for all manufacturing industries during 1995-2013. We illustrate a stage-by-stage analysis of anti-dumping investigations from initiation, preliminary decision, imposition of provisional duty, final affirmative decision, and imposition of final affirmative duty on a monthly basis at the six-digit harmonized system code-level. Findings - For cases in which provisional duties are imposed, the reduction in imports from named countries outweighs the increase in imports from unnamed countries. The substantial reduction in imports from named countries is large enough to offset the import diversion to unnamed countries, suggesting that import diversion in investigations is limited during the investigation period. Therefore, the use of provisional anti-dumping duties in Korea is effective, providing evidence of a chilling effect on aggregate imports. Originality/value - Few studies examine the size of the effects on import trade diversion of the imposition of provisional anti-dumping duties. We contribute to the literature by disentangling separate trade effects for each phase of the anti-dumping investigation process and imposition of provisional duty.

A Multi-step Time Series Forecasting Model for Mid-to-Long Term Agricultural Price Prediction

  • Jonghyun, Park;Yeong-Woo, Lim;Do Hyun, Lim;Yunsung, Choi;Hyunchul, Ahn
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.2
    • /
    • pp.201-207
    • /
    • 2023
  • In this paper, we propose an optimal model for mid to long-term price prediction of agricultural products using LGBM, MLP, LSTM, and GRU to compare and analyze the three strategies of the Multi-Step Time Series. The proposed model is designed to find the optimal combination between the models by selecting methods from various angles. Prior agricultural product price prediction studies have mainly adopted traditional econometric models such as ARIMA and LSTM-type models. In contrast, agricultural product price prediction studies related to Multi-Step Time Series were minimal. In this study, the experiment was conducted by dividing it into two periods according to the degree of volatility of agricultural product prices. As a result of the mid-to-long-term price prediction of three strategies, namely direct, hybrid, and multiple outputs, the hybrid approach showed relatively superior performance. This study academically and practically contributes to mid-to-long term daily price prediction by proposing an effective alternative.

The Impact of Chinese SMEs' Financial Structure on Innovation Efficiency (중국 중소기업 재무구조가 혁신 효율성에 미치는 영향)

  • Wang, Yiqi;Sim, Jae-Yeon
    • Industry Promotion Research
    • /
    • v.7 no.4
    • /
    • pp.97-108
    • /
    • 2022
  • This paper examined the impact of financing structure on the innovation efficiency of SMEs by constructing an econometric model using panel data of SMEs listed on the SME board from 2010 to 2020 as the research sample. The innovation efficiency of SMEs was measured by the Stochastic Frontier Analysis (SFA), the relationship between financing structure and innovation efficiency of SMEs was examined with the help of the Tobit model, and the corresponding heterogeneity analysis was conducted. Finally, the robustness of the model was tested. It was concluded that the effects of debt and equity financing on the quantitative efficiency of innovation were non-linear and mainly showed an inverted "U" shaped relationship. For innovation quality efficiency, bond financing could positively contribute, while equity financing negatively inhibits. Finally, the corresponding advice was given.

A Study on the Common RPN Model of Failure Mode Evaluation Analysis(FMEA) and its Application for Risk Factor Evaluation (위험 요인 평가를 위한 FMEA의 일반 RPN 모형과 활용에 관한 연구)

  • Cho, Seong Woo;Lee, Han Sol;Kang, Juyoung
    • Journal of Korean Society for Quality Management
    • /
    • v.50 no.1
    • /
    • pp.125-138
    • /
    • 2022
  • Purpose: Failure Mode and Effect Analysis (FMEA) is a widely utilized technique to measure product reliability by identifying potential failure modes. Even though FMEA techniques have been studied, the form of Risk Priority Number (RPN) used to evaluate risk priority in FMEA is still questionable because of its shortcomings. In this study, we suggest common RPN(cRPN) to resolve shortcomings of the traditional RPN and show the extensibility of cRPN. Methods: We suggest cRPN which is based on Cobb-Douglas production function, and represent the various application on weighting risk factors, weighted RPN in a mathematical way, and show the possibility of statistical approach. We also conduct numerical study to examine the difference of the traditional RPN and cRPN as well as the potential application from the analysis on marginal effects of each risk factor. Results: cRPN successfully integrates previously suggested approaches especially on the relative importance of risk factors and weighting RPN. Moreover, we analyze the effect of corrective actions in terms of econometric analysis using cRPN. Since cRPN is rely on the reliable mathematical model, there would be numerous applications using cRPN such as smart factory based on A.I. techniques. Conclusion: We propose a reliable mathematical model of RPN based on Cobb-Douglas production function. Our suggested model, cRPN, resolves various shortcomings such as consideration of the relative importance, the effect of combinations among risk factors. In addition, by adopting a reliable mathematical model, quantitative approaches are expected to be applied using cRPN. We find that cRPN can be utilized to the field of industry because it is able to be applied without modifying the entire systems or the conventional actions.

The extension of a continuous beliefs system and analyzing herd behavior in stock markets (연속신념시스템의 확장모형을 이용한 주식시장의 군집행동 분석)

  • Park, Beum-Jo
    • Economic Analysis
    • /
    • v.17 no.2
    • /
    • pp.27-55
    • /
    • 2011
  • Although many theoretical studies have tried to explain the volatility in financial markets using models of herd behavior, there have been few empirical studies on dynamic herding due to the technical difficulty of detecting herd behavior with time-series data. Thus, this paper theoretically extends a continuous beliefs system belonging to an agent based economic model by introducing a term representing agents'mutual dependence into each agent's utility function and derives a SV(stochastic volatility)-type econometric model. From this model the time-varying herding parameters are efficiently estimated by a Markov chain Monte Carlo method. Using monthly data of KOSPI and DOW, this paper provides some empirical evidences for stronger herding in the Korean stock market than in the U.S. stock market, and further stronger herding after the global financial crisis than before it. More interesting finding is that time-varying herd behavior has weak autocorrelation and the global financial crisis may increase its volatility significantly.

The Impact of Dual Labor Markets on Labor Productivity: Evidence from the OECD (노동시장 이중구조가 노동생산성에 미치는 영향: OECD 국가를 중심으로)

  • Choi, Koangsung;Lee, Jieun;Choe, Chung
    • Economic Analysis
    • /
    • v.25 no.3
    • /
    • pp.1-29
    • /
    • 2019
  • This paper examines the impact of a dual labor market structure on labor productivity using unbalanced panel data from 29 OECD member countries between 1990 and 2015. By applying a variety of regression models on the panel data (e.g., a pooled regression, a fixed effects model and a GMM), we explore how changes in worker-type composition among temporary, permanent and self-employed workers contribute to productivity growth. While it appears that our results differ slightly, depending on the econometric models, overall an increase in the share of permanent workers leads to a relatively higher increase in productivity growth. On the other hand, it is also seen that the effects of the share of temporary workers on labor productivity are considerably lower than that of permanent and self-employed workers. To sum it up, our findings indicate that an increase in temporary workers could have an adverse effect on labor productivity.

Determinants of artificial intelligence adoption in firms: Evidence from Korean firm-level data (기업의 인공지능 기술 도입에 영향을 미치는 요인 분석: 국내 기업 데이터를 이용한 실증연구)

  • Bong, Kang Ho
    • Informatization Policy
    • /
    • v.31 no.3
    • /
    • pp.34-47
    • /
    • 2024
  • Artificial intelligence(AI) is regarded as a key tool that can significantly contribute to innovation and improve productivity as digital transformation continues to spread rapidly. Currently, however, there is lack of understanding and empirical research on the factors that influence the adoption of AI by companies. In particular, most studies have been conducted by foreign researchers analyzing data from foreign companies, and domestic studies have limitations in terms of objectivity and timeliness. This study employs econometric methods to identify the determinants of AI adoption at the firm level. To this end, we derive the technological, organizational, and environmental context factors from the perspective of the Technology-Organization-Environment(TOE) framework as a representative theory of technology adoption factors. We then conduct a logistic regression analysis using data from 11,601 Korean firms. This study not only expands the research literature by supplementing the limitations of previous studies in Korea but also provides timely evidence and implications through empirical analysis.

Measuring the Economic Impact of Item Descriptions on Sales Performance (온라인 상품 판매 성과에 영향을 미치는 상품 소개글 효과 측정 기법)

  • Lee, Dongwon;Park, Sung-Hyuk;Moon, Songchun
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.4
    • /
    • pp.1-17
    • /
    • 2012
  • Personalized smart devices such as smartphones and smart pads are widely used. Unlike traditional feature phones, theses smart devices allow users to choose a variety of functions, which support not only daily experiences but also business operations. Actually, there exist a huge number of applications accessible by smart device users in online and mobile application markets. Users can choose apps that fit their own tastes and needs, which is impossible for conventional phone users. With the increase in app demand, the tastes and needs of app users are becoming more diverse. To meet these requirements, numerous apps with diverse functions are being released on the market, which leads to fierce competition. Unlike offline markets, online markets have a limitation in that purchasing decisions should be made without experiencing the items. Therefore, online customers rely more on item-related information that can be seen on the item page in which online markets commonly provide details about each item. Customers can feel confident about the quality of an item through the online information and decide whether to purchase it. The same is true of online app markets. To win the sales competition against other apps that perform similar functions, app developers need to focus on writing app descriptions to attract the attention of customers. If we can measure the effect of app descriptions on sales without regard to the app's price and quality, app descriptions that facilitate the sale of apps can be identified. This study intends to provide such a quantitative result for app developers who want to promote the sales of their apps. For this purpose, we collected app details including the descriptions written in Korean from one of the largest app markets in Korea, and then extracted keywords from the descriptions. Next, the impact of the keywords on sales performance was measured through our econometric model. Through this analysis, we were able to analyze the impact of each keyword itself, apart from that of the design or quality. The keywords, comprised of the attribute and evaluation of each app, are extracted by a morpheme analyzer. Our model with the keywords as its input variables was established to analyze their impact on sales performance. A regression analysis was conducted for each category in which apps are included. This analysis was required because we found the keywords, which are emphasized in app descriptions, different category-by-category. The analysis conducted not only for free apps but also for paid apps showed which keywords have more impact on sales performance for each type of app. In the analysis of paid apps in the education category, keywords such as 'search+easy' and 'words+abundant' showed higher effectiveness. In the same category, free apps whose keywords emphasize the quality of apps showed higher sales performance. One interesting fact is that keywords describing not only the app but also the need for the app have asignificant impact. Language learning apps, regardless of whether they are sold free or paid, showed higher sales performance by including the keywords 'foreign language study+important'. This result shows that motivation for the purchase affected sales. While item reviews are widely researched in online markets, item descriptions are not very actively studied. In the case of the mobile app markets, newly introduced apps may not have many item reviews because of the low quantity sold. In such cases, item descriptions can be regarded more important when customers make a decision about purchasing items. This study is the first trial to quantitatively analyze the relationship between an item description and its impact on sales performance. The results show that our research framework successfully provides a list of the most effective sales key terms with the estimates of their effectiveness. Although this study is performed for a specified type of item (i.e., mobile apps), our model can be applied to almost all of the items traded in online markets.

The Effectiveness of Fiscal Policies for R&D Investment (R&D 투자 촉진을 위한 재정지원정책의 효과분석)

  • Song, Jong-Guk;Kim, Hyuk-Joon
    • Journal of Technology Innovation
    • /
    • v.17 no.1
    • /
    • pp.1-48
    • /
    • 2009
  • Recently we have found some symptoms that R&D fiscal incentives might not work well what it has intended through the analysis of current statistics of firm's R&D data. Firstly, we found that the growth rate of R&D investment in private sector during the recent decade has been slowdown. The average of growth rate (real value) of R&D investment is 7.1% from 1998 to 2005, while it was 13.9% from 1980 to 1997. Secondly, the relative share of R&D investment of SME has been decreased to 21%('05) from 29%('01), even though the tax credit for SME has been more beneficial than large size firm, Thirdly, The R&D expenditure of large size firms (besides 3 leading firms) has not been increased since late of 1990s. We need to find some evidence whether fiscal incentives are effective in increasing firm's R&D investment. To analyse econometric model we use firm level unbalanced panel data for 4 years (from 2002 to 2005) derived from MOST database compiled from the annual survey, "Report on the Survey of Research and Development in Science and Technology". Also we use fixed effect model (Hausman test results accept fixed effect model with 1% of significant level) and estimate the model for all firms, large firms and SME respectively. We have following results from the analysis of econometric model. For large firm: i ) R&D investment responds elastically (1.20) to sales volume. ii) government R&D subsidy induces R&D investment (0.03) not so effectively. iii) Tax price elasticity is almost unity (-0.99). iv) For large firm tax incentive is more effective than R&D subsidy For SME: i ) Sales volume increase R&D investment of SME (0.043) not so effectively. ii ) government R&D subsidy is crowding out R&D investment of SME not seriously (-0.0079) iii) Tax price elasticity is very inelastic (-0.054) To compare with other studies, Koga(2003) has a similar result of tax price elasticity for Japanese firm (-1.0036), Hall((l992) has a unit tax price elasticity, Bloom et al. (2002) has $-0.354{\sim}-0.124$ in the short run. From the results of our analysis we recommend that government R&D subsidy has to focus on such an areas like basic research and public sector (defense, energy, health etc.) not overlapped private R&D sector. For SME government has to focus on establishing R&D infrastructure. To promote tax incentive policy, we need to strengthen the tax incentive scheme for large size firm's R&D investment. We recommend tax credit for large size film be extended to total volume of R&D investment.

  • PDF

Information types and characteristics within the Wireless Emergency Alert in COVID-19: Focusing on Wireless Emergency Alerts in Seoul (코로나 19 하에서 재난문자 내의 정보유형 및 특성: 서울특별시 재난문자를 중심으로)

  • Yoon, Sungwook;Nam, Kihwan
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.45-68
    • /
    • 2022
  • The central and local governments of the Republic of Korea provided information necessary for disaster response through wireless emergency alerts (WEAs) in order to overcome the pandemic situation in which COVID-19 rapidly spreads. Among all channels for delivering disaster information, wireless emergency alert is the most efficient, and since it adopts the CBS(Cell Broadcast Service) method that broadcasts directly to the mobile phone, it has the advantage of being able to easily access disaster information through the mobile phone without the effort of searching. In this study, the characteristics of wireless emergency alerts sent to Seoul during the past year and one month (January 2020 to January 2021) were derived through various text mining methodologies, and various types of information contained in wireless emergency alerts were analyzed. In addition, it was confirmed through the population mobility by age in the districts of Seoul that what kind of influence it had on the movement behavior of people. After going through the process of classifying key words and information included in each character, text analysis was performed so that individual sent characters can be used as an analysis unit by applying a document cluster analysis technique based on the included words. The number of WEAs sent to the Seoul has grown dramatically since the spread of Covid-19. In January 2020, only 10 WEAs were sent to the Seoul, but the number of the WEAs increased 5 times in March, and 7.7 times over the previous months. Since the basic, regional local government were authorized to send wireless emergency alerts independently, the sending behavior of related to wireless emergency alerts are different for each local government. Although most of the basic local governments increased the transmission of WEAs as the number of confirmed cases of Covid-19 increases, the trend of the increase in WEAs according to the increase in the number of confirmed cases of Covid-19 was different by region. By using structured econometric model, the effect of disaster information included in wireless emergency alerts on population mobility was measured by dividing it into baseline effect and accumulating effect. Six types of disaster information, including date, order, online URL, symptom, location, normative guidance, were identified in WEAs and analyzed through econometric modelling. It was confirmed that the types of information that significantly change population mobility by age are different. Population mobility of people in their 60s and 70s decreased when wireless emergency alerts included information related to date and order. As date and order information is appeared in WEAs when they intend to give information about Covid-19 confirmed cases, these results show that the population mobility of higher ages decreased as they reacted to the messages reporting of confirmed cases of Covid-19. Online information (URL) decreased the population mobility of in their 20s, and information related to symptoms reduced the population mobility of people in their 30s. On the other hand, it was confirmed that normative words that including the meaning of encouraging compliance with quarantine policies did not cause significant changes in the population mobility of all ages. This means that only meaningful information which is useful for disaster response should be included in the wireless emergency alerts. Repeated sending of wireless emergency alerts reduces the magnitude of the impact of disaster information on population mobility. It proves indirectly that under the prolonged pandemic, people started to feel tired of getting repetitive WEAs with similar content and started to react less. In order to effectively use WEAs for quarantine and overcoming disaster situations, it is necessary to reduce the fatigue of the people who receive WEA by sending them only in necessary situations, and to raise awareness of WEAs.