• Title/Summary/Keyword: Ecological traits

Search Result 146, Processing Time 0.024 seconds

Growth Response, Ecological Niche and Overlap between Quercus variabilis and Quercus dentata under Soil Moisture Gradient (토양수분구배에서 굴참나무와 떡갈나무의 생육반응, 생태 지위 및 중복역)

  • Park, Yeo-Bin;Kim, Eui-Joo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.26 no.5
    • /
    • pp.47-56
    • /
    • 2023
  • The Quercus variabilis and Quercus dentata, which are said to be relatively drought tolerant among the important genus Quercus that represent deciduous broad-leaved forests in Korea. These two species are widely distributed worldwide in Korea, Japan and China (northern, central, western and eastern subtropical regions). This study compared the ecological niche breadth and overlap according to growth response in 4 soil moisture gradients for the two species and tried to reveal degree of competition and ecological niche characteristics. The ecological niche breadth was 0.977±0.020 for Q. variabilis and 0.979±0.014 for Q. dentata, the latter being slightly wider. And they were similar in 5 traits (stem length, leaf lamina length, leaf width length, stem weight, leaf petiole weight), Q. variabilis was more dominant in 4 traits (leaves number, stem diameter, leaf area, leaf petiole length), and Q. dentata was more dominant in 7 traits (root length, shoot length, plant weight, root weight, shoot weight, leaf weight, leaf petiole weight). The ecological niche overlap for soil moisture between the two species overlapped most in plant structure-related traits and least in photosynthetic organ-related traits such as petiole length. As a result of principal component analysis, degree of competition between the two species for soil moisture was more severe when the soil moisture condition was low than high. Among the measured traits that affect the two-dimensional distribution, 8 traits (Leaves number, Shoot length, Stem length, Plant weight, Root weight, Shoot weight, Stem weight, Leaves weight) were correlated with the factor 1, and 2 traits (Leaf width length, Leaf petiole weight) were correlated with the factor 2 (r>0.5). These results show that the ecological response of the two species to soil moisture is not a few traits involved, but several traits are involved simultaneously.

Ecological Niche Overlap and Competition between Quercus mongolica and Quercus dentata Under Soil Water Gradient

  • Yeon-ok, Seo;Se-Hee, Kim;Eui-Joo, Kim;Yoon-Seo, Kim;Kyeong-Mi, Cho;Jae-Hoon, Park;Ji-Won, Park;JungMin, Lee;Jin Hee, Park;Byoung-Ki, Choi;Young-Han, You
    • Journal of Forest and Environmental Science
    • /
    • v.38 no.4
    • /
    • pp.229-238
    • /
    • 2022
  • Q. mongolica and Q. dentata are representative species of deciduous forest communities in Korea and are known to be relatively resistant to soil drying condition among Korean oaks. This study attempted to elucidate the degree of competition and ecological niche characteristics of the two species by comparing the ecological responses of the two species according to soil moisture. Competition between Q. mongolica and Q. dentata was shown to be more intense under the conditions where moisture content was low than under the conditions where moisture content was high. As for the ecological niche overlaps of the two species for soil moisture, the structural traits of plant such as stem diameter overlapped the most, the traits of biomass such as petiole weight overlapped the least, and photosynthetic organ-related traits such as leaf width and length overlapped intermediately. When looking at the competition for soil moisture between the two species, it can be seen that Q. mongolica won in nine traits (leaf width length, leaf lamina length, leaf lamina weight, leaf petiole weight, leaf area, leaves weight, shoot weight, root weight, and plant weight) and Q. dentata won in the remaining seven traits (leaf petiole length, leaves number, stem length, stem diameter, stem weight, shoot length, and root length). Competition between the two species for the moisture environment of the soil was shown to be intense under the conditions where moisture content was low. The degree of competition between Q. dentata and Q. mongolica for soil moisture is high under the conditions where soil moisture content is low, and it is judged that Q. mongolica is more competitive for soil moisture than Q. dentata.

Skeletal Differences in Lower Body and Limbs in Relation to Ecological Traits in Anurans in South Korea

  • Park, Jun-Kyu;Kang, Tae Gyu;Lee, Ji-Eun;Kim, Ji-Eun;Kim, Younghyun;Do, Yuno
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.3 no.1
    • /
    • pp.32-40
    • /
    • 2022
  • The trade-off between morphology and physical function may vary according to ecological traits. Taking a quantitative approach, we attempted to analyze the differences in the skeletal shape of the lower body and limbs in relation to the ecological traits of four anuran species (Dryophytes japonicus, Glandirana rugosa, Pelophylax nigromaculatus, and Lithobates catesbeianus) occurring in South Korea. Body size, locomotor mode, microhabitat, trophic positions, and predator defense mechanisms were selected for the ecological traits of the anurans. The pelvis, ilium, and urostyle, which are associated with locomotor performance, were selected for the skeletal shape of the lower body. The ratio of limbs, which is related to locomotor mode and microhabitat, was confirmed by analyzing the skeletons of the forelimbs (radio-ulnar and humerus) and hindlimbs (femur and tibiofibular). Both landmark-based geometric morphometrics and traditional methods were used for skeletal shape comparison. The skeletal shape of the lower body was completely different among the four species, whereas the ratio of the limbs was only different in D. japonicus. The skeletal shape of the lower body may be related to body mass and predator defense mechanisms, whereas the ratio of the limbs was related to the locomotor mode and microhabitat. Quantifying these morphological differences among various species can help elucidate the mechanisms of behavioral and morphological changes in response to ecological effects.

Floral Analysis in the Kimpo Landfills and Its Peripheral Region (김포 매립지와 그 근린 지역의 식물상 분석)

  • Kim, Jong-Won;Yong-Kyoo Jung
    • The Korean Journal of Ecology
    • /
    • v.18 no.1
    • /
    • pp.31-41
    • /
    • 1995
  • Floral analysis about vegetation of Kimpo landfills and its periphery region was carried out. The study area was defined to a square $(81km^2)$ of which center was located at 250m in front of Andongpo, Komdan-myon, Kimpo-gun in the northwest part of the Kyunggi Province. This study was accomplished by analyzing five qualitative traits such as ecological strategy, reproductive strategy, distribution type, native/foreign division and life-form throughout actual investigation of the flora. The flora was composed of 536 taxa which comprise 105 families, 343 genera, 458 species, 1 subaspecies, 70 varieties and 7 forms (including 92 species of horticultural plant). Lythrum salicaria community, Spiraea salicifolia community, ottelia alismoides community and woods of Alnus japonica were recorded ? 새 retrictive distribution according to habitat characteristics. Owing to severe anthropogenic interferences such as construction of the Kimpo landfills in the study areas, a high proportion of ruderal plants and neophytes in the floral composition was recognized. The proportion of individual distribution type and therophyte was very high throughout whole study areas, and plant communities in the reclaimed areas were characterized by high proportion of phalanx plant species. Analysis of the correlations between meshes with ecological traits of plant species showed that Kimpo landfills and its periphery region was divided into two vegetation types, coastal type and inland type, as a result of possible saline effects.

  • PDF

Phenotypic Diversity of Shea(Vitellaria Paradoxa C. F. Gaertn.) Populations across Four Agro-Ecological Zones of Cameroon

  • Nafan, Diarrassouba;Divine, Bup Nde;Cesar, Kapseu;Christophe, Kouame;Abdourahamane, Sangare
    • Journal of Crop Science and Biotechnology
    • /
    • v.10 no.4
    • /
    • pp.223-230
    • /
    • 2007
  • Vitellaria paradoxa commonly called shea is an important agro forestry and fruit-bearing species present in four agro-ecological zones of Cameroon. The goal of this work was the morphological characterization of certain populations of V. paradoxa which will serve as a necessary step for a subsequent genetic study of the species. Morphological observations related to 20 agronomic traits, studied on 8-13 trees selected from each of the eight shea populations across four different agro-ecological zones located in four provinces of Cameroon were studied. The study showed that there was a variation between the populations, related to the traits measured on the trunk, fruit, nut, and leaf. Three shapes of the tree(ball, broom, and trained), five shapes of the fruit(round, oblong, reversed pear, ovoid, and oblong), three colors of the nut(clear brown, dark brown, and blackish brown) were identified. The principal component analysis(PCA) carried out on the quantitative characters revealed 72% of the total variance expressed on the first and second main axis. This variation was essentially explained by the traits measured on the fruits and on the nuts. The analyses showed that only the traits of the fruits and the nuts were discriminative. The shea populations studied were structured into two distinct groups using these discriminative traits.

  • PDF

Genetic diversity and selection of Tibetan sheep breeds revealed by whole-genome resequencing

  • Dehong Tian;Buying Han;Xue Li;Dehui Liu;Baicheng Zhou;Chunchuan Zhao;Nan Zhang;Lei Wang;Quanbang Pei;Kai Zhao
    • Animal Bioscience
    • /
    • v.36 no.7
    • /
    • pp.991-1002
    • /
    • 2023
  • Objective: This study aimed to elucidate the underlying gene regions responsible for productive, phenotypic or adaptive traits in different ecological types of Tibetan sheep and the discovery of important genes encoding valuable traits. Methods: We used whole-genome resequencing to explore the genetic relationships, phylogenetic tree, and population genetic structure analysis. In addition, we identified 28 representative Tibetan sheep single-nucleotide polymorphisms (SNPs) and genomic selective sweep regions with different traits in Tibetan sheep by fixation index (Fst) and the nucleotide diversity (θπ) ratio. Results: The genetic relationships analysis showed that each breed partitioned into its own clades and had close genetic relationships. We also identified many potential breed-specific selective sweep regions, including genes associated with hypoxic adaptability (MTOR, TRHDE, PDK1, PTPN9, TMTC2, SOX9, EPAS1, PDGFD, SOCS3, TGFBR3), coat color (MITF, MC1R, ERCC2, TCF25, ITCH, TYR, RALY, KIT), wool traits (COL4A2, ERC2, NOTCH2, ROCK1, FGF5, SOX9), and horn phenotypes (RXFP2). In particular, a horn-related gene, RXFP2, showed the four most significantly associated SNP loci (g. 29481646 A>G, g. 29469024 T>C, g. 29462010 C>T, g. 29461968 C>T) and haplotypes. Conclusion: This finding demonstrates the potential for genetic markers in future molecular breeding programs to improve selection for horn phenotypes. The results will facilitate the understanding of the genetic basis of production and adaptive unique traits in Chinese indigenous Tibetan sheep taxa and offer a reference for the molecular breeding of Tibetan sheep.

Ecological traits and distribution patterns of Osmia spp. in different regions and altitudes in South Korea

  • Kyu-Won Kwak;Kathannan Sankar;Su Jin Lee;Young-Bo Lee;Kyeong Yong Lee
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.47 no.1
    • /
    • pp.25-33
    • /
    • 2023
  • Solitary bees, such as Osmia cornifrons, O. pedicornis, O. satoi, and O. taurus (Hymenoptera: Megachilidae), have the potential for cost-effective and sustainable pollination, necessitating a comprehensive understanding of their ecological traits to implement effective fertilization strategies for various crops. This study investigated the nesting rate of Osmia spp. in different regions and altitudes, using various trap types, and found that the highest nesting rate occurred at altitudes of 300-399 m a.s.l. and showing a preference for bamboo-type traps, with the Andong region having the highest nesting rate overall, indicating the influence of altitude, habitat area, and trap type on the density of Osmia spp. nests. The distribution and diversity of the four Osmia spp. in different regions and altitudes revealed variations in their occurrence, with O. pedicornis having the broadest distribution rate, particularly at altitudes above 300 m a.s.l.. The present study found significant differences between species in the cocoon masses of O. cornifrons, O. pedicornis, and O. taurus, with region and altitude influencing the masses of each species too.

Comparison of ecophysiological and leaf anatomical traits of native and invasive plant species

  • Rindyastuti, Ridesti;Hapsari, Lia;Byun, Chaeho
    • Journal of Ecology and Environment
    • /
    • v.45 no.1
    • /
    • pp.24-39
    • /
    • 2021
  • Background: To address the lack of evidence supporting invasion by three invasive plant species (Imperata cylindrica, Lantana camara, and Chromolaena odorata) in tropical ecosystems, we compared the ecophysiological and leaf anatomical traits of these three invasive alien species with those of species native to Sempu Island, Indonesia. Data on four plant traits were obtained from the TRY Plant Trait Database, and leaf anatomical traits were measured using transverse leaf sections. Results: Two ecophysiological traits including specific leaf area (SLA) and seed dry weight showed significant association with plant invasion in the Sempu Island Nature Reserve. Invasive species showed higher SLA and lower seed dry weight than non-invasive species. Moreover, invasive species showed superior leaf anatomical traits including sclerenchymatous tissue thickness, vascular bundle area, chlorophyll content, and bundle sheath area. Principal component analysis (PCA) showed that leaf anatomical traits strongly influenced with cumulative variances (100% in grass and 88.92% in shrubs), where I. cylindrica and C. odorata outperformed non-invasive species in these traits. Conclusions: These data suggest that the traits studied are important for plant invasiveness since ecophysiological traits influence of light capture, plant growth, and reproduction while leaf anatomical traits affect herbivory, photosynthetic assimilate transport, and photosynthetic activity.

Differences in functional traits of leaf blade and culm of common reed in four habitat types

  • Hong, Mun Gi;Nam, Bo Eun;Kim, Jae Geun
    • Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.98-103
    • /
    • 2019
  • We compared the functional traits of leaf blades and culms of common reed (Phragmites australis) in four habitat types of distinguished environments such as temperature, precipitation, water characteristics, and indices related to biomass production (montane fen, MF; riparian marsh, RM; lagoon, LG; and salt marsh, SM). We also examined the relationships between the functional traits within and among populations. Four populations showed remarkable differences in the functional traits of leaf blades and culms. MF and RM had relatively tall (> 300 cm) and thick (> 8 mm) culms bearing long leaf blades (> 40 cm), whereas LG and SM had relatively shorter and thinner culms bearing shorter leaf blades than MF and RM. Some relationships between the functional traits of leaf blades and culms showed negative or not significant correlations within the population, whereas most of the relationships between the functional traits showed positive correlations particularly when all the data from four populations was included into the correlation analysis.

Variation in leaf functional traits of the Korean maple (Acer pseudosieboldianum) along an elevational gradient in a montane forest in Southern Korea

  • Nam, Ki Jung;Lee, Eun Ju
    • Journal of Ecology and Environment
    • /
    • v.42 no.4
    • /
    • pp.278-284
    • /
    • 2018
  • Plant functional traits have been shown to be useful to understand how and why ecosystems and their components vary across environmental heterogeneity or gradients. This study investigated how plant functional (leaf) traits vary according to an elevation-associated environmental gradient. Environmental gradients (mean annual temperature and precipitation) were quantified, and leaf traits (leaf area, specific leaf area, leaf nitrogen, leaf phosphorus, leaf carbon, and leaf C/N ratio) of the understory woody plant species Acer pseudosieboldianum were examined across an elevational gradient ranging from 600 to 1200 m in a Baegunsan Mountain in Gwangyang-si, Jeollanam-do, South Korea. The results showed that mean annual temperature and precipitation decreased and increased along with elevation, respectively. Leaf area of the plant species decreased slightly with increasing elevation, while specific leaf area did not differ significantly. Leaf nutrients (nitrogen, phosphorus, and carbon concentrations) were higher at high elevations, but leaf C/N ratio decreased with elevation.