• Title/Summary/Keyword: Ecological data

Search Result 2,130, Processing Time 0.04 seconds

Derivation of Ecological Protective Concentration using the Probabilistic Ecological Risk Assessment applicable for Korean Water Environment: (I) Cadmium

  • Nam, Sun-Hwa;Lee, Woo-Mi;An, Youn-Joo
    • Toxicological Research
    • /
    • v.28 no.2
    • /
    • pp.129-137
    • /
    • 2012
  • Probabilistic ecological risk assessment (PERA) for deriving ecological protective concentration (EPC) was previously suggested in USA, Australia, New Zealand, Canada, and Netherland. This study suggested the EPC of cadmium (Cd) based on the PERA to be suitable to Korean aquatic ecosystem. First, we collected reliable ecotoxicity data from reliable data without restriction and reliable data with restrictions. Next, we sorted the ecotoxicity data based on the site-specific locations, exposure duration, and water hardness. To correct toxicity by the water hardness, EU's hardness corrected algorithm was used with slope factor 0.89 and a benchmark of water hardness 100. EPC was calculated according to statistical extrapolation method (SEM), statistical extrapolation $method_{Acute\;to\;chronic\;ratio}$ ($SEM_{ACR}$), and assessment factor method (AFM). As a result, aquatic toxicity data of Cd were collected from 43 acute toxicity data (4 Actinopterygill, 29 Branchiopoda, 1 Polychaeta, 2 Bryozoa, 6 Chlorophyceae, 1 Chanophyceae) and 40 chronic toxicity data (2 Actinopterygill, 23 Branchiopoda, 9 Chlorophyceae, 6 Macrophytes). Because toxicity data of Cd belongs to 4 classes in taxonomical classification, acute and chronic EPC (11.07 ${\mu}g/l$ and 0.034 ${\mu}g/l$, respectively) was calculated according to SEM technique. These values were included in the range of international EPCs. This study would be useful to establish the ecological standard for the protection of aquatic ecosystem in Korea.

The US National Ecological Observatory Network and the Global Biodiversity Framework: national research infrastructure with a global reach

  • Katherine M. Thibault;Christine M, Laney;Kelsey M. Yule;Nico M. Franz;Paula M. Mabee
    • Journal of Ecology and Environment
    • /
    • v.47 no.4
    • /
    • pp.219-227
    • /
    • 2023
  • The US National Science Foundation's National Ecological Observatory Network (NEON) is a continental-scale program intended to provide open data, samples, and infrastructure to understand changing ecosystems for a period of 30 years. NEON collects co-located measurements of drivers of environmental change and biological responses, using standardized methods at 81 field sites to systematically sample variability and trends to enable inferences at regional to continental scales. Alongside key atmospheric and environmental variables, NEON measures the biodiversity of many taxa, including microbes, plants, and animals, and collects samples from these organisms for long-term archiving and research use. Here we review the composition and use of NEON resources to date as a whole and specific to biodiversity as an exemplar of the potential of national research infrastructure to contribute to globally relevant outcomes. Since NEON initiated full operations in 2019, NEON has produced, on average, 1.4 M records and over 32 TB of data per year across more than 180 data products, with 85 products that include taxonomic or other organismal information relevant to biodiversity science. NEON has also collected and curated more than 503,000 samples and specimens spanning all taxonomic domains of life, with up to 100,000 more to be added annually. Various metrics of use, including web portal visitation, data download and sample use requests, and scientific publications, reveal substantial interest from the global community in NEON. More than 47,000 unique IP addresses from around the world visit NEON's web portals each month, requesting on average 1.8 TB of data, and over 200 researchers have engaged in sample use requests from the NEON Biorepository. Through its many global partnerships, particularly with the Global Biodiversity Information Facility, NEON resources have been used in more than 900 scientific publications to date, with many using biodiversity data and samples. These outcomes demonstrate that the data and samples provided by NEON, situated in a broader network of national research infrastructures, are critical to scientists, conservation practitioners, and policy makers. They enable effective approaches to meeting global targets, such as those captured in the Kunming-Montreal Global Biodiversity Framework.

Developing a Multi-purpose Ecotoxicity Database Model and Web-based Searching System for Ecological Risk Assessment of EDCs in Korea (웹 기반 EDCs 생태 독성 자료베이스 모델 및 시스템 개발)

  • Kwon, Bareum;Lee, Hunjoo
    • Journal of Environmental Health Sciences
    • /
    • v.43 no.5
    • /
    • pp.412-421
    • /
    • 2017
  • Objectives: To establish a system for integrated risk assessment of EDCs in Korea, infrastructure for providing toxicity data of ecological media should be established. Some systems provide soil ecotoxicity databases along with aquatic ecotoxicity information, but a well-structured ecotoxicity database system is still lacking. Methods: Aquatic and soil ecotoxicological information were collected by a toxicologist based on a human readable data (HRD) format for collecting ecotoxicity data that we provided. Among these data, anomalies were removed according to database normalization theory. Also, the data were cleaned and encoded to establish a machine-readable data (MRD) ecotoxicity database system. Results: We have developed a multi-purpose ecotoxicity database model focusing on EDCs, ecological species, and toxic effects. Also, we have constructed a web-based data searching system to retrieve, extract, and download data with greater availability. Conclusions: The results of our study will contribute to decision-making as a tool for efficient ecological risk assessment of EDCs in Korea.

The Effects of a Project-Based Ecological Transition Education Program on Young Children's Awareness of Sustainable Development, Ecological Literacy, and Problem-Solving Abilities (프로젝트 접근법에 기반한 유아 생태전환교육 프로그램이 유아의 지속가능발전인식, 생태소양, 문제해결력에 미치는 효과)

  • Gowoon Park;Jihyun Kim
    • Korean Journal of Childcare and Education
    • /
    • v.20 no.3
    • /
    • pp.125-147
    • /
    • 2024
  • Objective: This study aims to implement an ecological transition education program for young children, based on a project approach, to investigate its effectiveness in enhancing sustainable development awareness, ecological literacy, and problem-solving skills. Methods: In this study, 56 five-year-old children from a preschool in S City were assigned to either a quasi-experimental group or a control group, with 28 children in each group. The project-based ecological transition education program for young children was conducted from July 14 to September 15, 2023. The experimental group explored the themes of 'marine life' and 'pets and animal welfare,' while the control group focused on different topics. The research employed independent sample t-tests and analysis of covariance (ANCOVA) for data analysis. Results: The project-based ecological transition education program effectively enhanced young children's awareness of sustainable development, ecological literacy, and problem-solving skills. Conclusion/Implications: This study is significant in developing an integrated, project-based ecological transition education program within a play-centered curriculum. It demonstrates how sustainable values can be effectively incorporated into play. Furthermore, the findings can serve as foundational data for implementing educational and childcare programs that nurture young children to become ecological citizens, leading sustainable futures.

An Analysis of Big Data Structure Based on the Ecological Perspective (생태계 관점에서의 빅데이터 활성화를 위한 구조 연구)

  • Cho, Jiyeon;Kim, Taisiya;Park, Keon Chul;Lee, Bong Gyou
    • Journal of Information Technology Services
    • /
    • v.11 no.4
    • /
    • pp.277-294
    • /
    • 2012
  • The purpose of this research is to analyze big data structure and various objects in big data industry based on ecological perspective. Big data is rapidly emerging as a highly valuable resource to secure competitiveness of enterprise and government. Accordingly, the main issues in big data are to find ways of creating economic value and solving various problems. However big data is not systematically organized, and hard to utilize as it constantly expands to related industry such as telecommunications, finance and manufacturing. Under this circumstance, it is crucial to understand range of big data industry and to which stakeholders are related. The ecological approach is useful to understand comprehensive industry structure. Therefore this study aims at confirming big data structure and finding issues from interaction among objects. Results of this study show main framework of big data ecosystem including relationship among object elements composing of the ecosystem. This study has significance as an initial study on big data ecosystem. The results of the study can be useful guidelines to the government for making systemized big data ecosystem and the entrepreneur who is considering launching big data business.

Complaint-based Data Demands for Advancement of Environmental Impact Assessment (환경영향평가 고도화를 위한 평가항목별 민원기반 데이터 수요 도출 연구)

  • Choi, Yu-Young;Cho, Hyo-Jin;Hwang, Jin-Hoo;Kim, Yoon-Ji;Lim, No-Ol;Lee, Ji-Yeon;Lee, Jun-Hee;Sung, Min-Jun;Jeon, Seong-Woo;Sung, Hyun-Chan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.6
    • /
    • pp.49-65
    • /
    • 2021
  • Although the Environmental Impact Assessment (EIA) is continuously being advanced, the number of environmental disputes regarding it is still on the rise. In order to supplement this, it is necessary to analyze the accumulated complaint cases. In this study, through the analysis of complaint cases, it is possible to identify matters that need to be improved in the existing EIA stages as well as various damages and conflicts that were not previously considered or predicted. In the process, we dervied 'complaint-based data demands' that should be additionally examined to improve the EIA. To this end, a total of 348 news articles were collected by searching with combinations of 'environmental impact assessment' and a keyword for each of the six assessment groups. As a result of analysis of collected data, a total of 54 complaint-based data demands were suggested. Among those were 15 items including 'impact of changes in seawater flow on water quality' in the category of water environment; 13 items including 'area of green buffer zone' in atmospheric environment; 10 items including 'impact of soundproof wall on wind corridor' in living environment; 8 items including 'expected number of users' in socioeconomic environment, 4 items including 'feasibility assessment of development site in terms of environmental and ecological aspects' in natural ecological environment; and 4 items including 'prediction of sediment runoff and damaged areas according to the increase in intensity and frequency of torrential rain' in land environment. In future research, more systematic complaint collection and analysis as well as specific provision methods regarding stages, subjects, and forms of use should be sought to apply the derived data demands in the actual EIA process. It is expected that this study can serve to advance the prediction and assessment of EIA in the future and to minimize environmental impact as well as social conflict in advance.

Forest Canopy Density Estimation Using Airborne Hyperspectral Data

  • Kwon, Tae-Hyub;Lee, Woo-Kyun;Kwak, Doo-Ahn;Park, Tae-Jin;Lee, Jong-Yoel;Hong, Suk-Young;Guishan, Cui;Kim, So-Ra
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.3
    • /
    • pp.297-305
    • /
    • 2012
  • This study was performed to estimate forest canopy density (FCD) using airborne hyperspectral data acquired in the Independence Hall of Korea in central Korea. The airborne hyperspectral data were obtained with 36 narrow spectrum ranges of visible (Red, Green, and Blue) and near infrared spectrum (NIR) scope. The FCD mapping model developed by the International Tropical Timber Organization (ITTO) uses vegetation index (VI), bare soil index (BI), shadow index (SI), and temperature index (TI) for estimating FCD. Vegetation density (VD) was calculated through the integration of VI and BI, and scaled shadow index (SSI) was extracted from SI after the detection of black soil by TI. Finally, the FCD was estimated with VD and SSI. For the estimation of FCD in this study, VI and SI were extracted from hyperspectral data. But BI and TI were not available from hyperspectral data. Hyperspectral data makes the numerous combination of each band for calculating VI and SI. Therefore, the principal component analysis (PCA) was performed to find which band combinations are explanatory. This study showed that forest canopy density can be efficiently estimated with the help of airborne hyperspectral data. Our result showed that most forest area had 60 ~ 80% canopy density. On the other hand, there was little area of 10 ~ 20% canopy density forest.

Molecular Characterization of Filenchus cylindricus (Thorne & Malek, 1968) Niblack & Bernard, 1985 (Tylenchida: Tylenchidae) from Korea, with Comments on Its Morphology

  • Mwamula, Abraham Okki;Kim, Yiseul;Kim, Yeong Ho;Lee, Ho-wook;Kim, Young Ho;Lee, Dong Woon
    • The Plant Pathology Journal
    • /
    • v.38 no.4
    • /
    • pp.323-333
    • /
    • 2022
  • Filenchus cylindricus (Thorne & Malek, 1968) Niblack & Bernard, 1985 was reported from the sandy rhizospheric soils of Poa pratensis and for the first time in Korea. Females and males are molecularly characterized and morphological and morphometric data supplied. Identification was made using an integrative approach considering morphological characteristics and inferences drawn from the analyses of the D2-D3 expansion segment of 28S rRNA and ITS1-5.8S-ITS2 of rRNA partial sequences. Females and males from Korea conform to the type descriptions and also to subsequent species descriptions from Iowa and Colorado USA, Sudan and Pakistan. Despite the close morphological and morphometric similarities with F. thornei (Andrássy, 1954) Andrássy, 1963, the two species can be adequately differentiated based on molecular data inference.

A Study on Ecological Change of Naturally Favorable Consolidated Drainage Channel (친환경 정비 배수로의 생태변화 조사에 관한 연구)

  • Kim, Sun-Joo;Ko, Jae-Sun
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.109-112
    • /
    • 2002
  • A naturally favorable consolidated Drainage canal which had been completed in August 2000 was observed over two years with surrounding environment, fauna and flora, alternation of fauna. Research data for understanding ecological change were vegetation, water quality, fishes and amphibia. Through these researched data, biotope data would be established basically. Creation of Biotope which is related to naturally favorable consolidted ecological change of canal was considered on this study.

  • PDF

Exploring Community Structure and Function with Network Analysis: a Case Study of Cheonggye Stream (생태계 네트워크 분석을 이용한 생물 군집의 구조와 기능에 대한 연구: 청계천을 사례로)

  • Lee, Minyoung;Kim, Yongeun;Cho, Kijong
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.3
    • /
    • pp.370-376
    • /
    • 2018
  • It is important to consider interaction between species in understanding structure and function of the biological community. Current ecological issues such as climate change and habitat loss emphasize the significance of the concept of species interaction in that varying species' interaction across environmental gradients may lead to altered ecological function and services. However, most community studies have focused on species diversity through analysis of quantitative indices based on species composition and abundance data without considering species interactions in the community. 'Ecological network analysis' based on network theory enables exploration of structural and functional properties of ecosystems composed of various species and their interactions. In this paper, network analysis of Cheonggye stream as a case study was presented to promote uses of network analysis on ecological studies in Korea. Cheonggye stream has a simple biological structure with link density of 1.48, connectance 0.07, generality 4.43, and vulnerability 1.94. The ecological network analysis can be used to provide ecological interpretations of domestic long-term monitoring data and can contribute to conserving and managing species diversity in ecosystems.