• Title/Summary/Keyword: Ecological Monitoring

Search Result 658, Processing Time 0.026 seconds

Study on Internet of Things Based Low-Power Wireless Sensor Network System for Wild Vegetation Communities Ecological Monitoring (야생식생군락 생태계 모니터링을 위한 사물인터넷 기반의 저전력 무선 센서네트워크 시스템에 관한 연구)

  • Kim, Nae-Soo;Lee, Kyeseon;Ryu, Jaehong
    • Journal of Information Technology Services
    • /
    • v.14 no.1
    • /
    • pp.159-173
    • /
    • 2015
  • This paper presents a study on the Internet of Things based low-power wireless sensor networks for remote monitoring of wildlife ecosystem due to climate change. Especially, it is targeting the wild vegetation communities ecological monitoring. First, we performed a pre-test and analysis for selecting the appropriate frequency for the sensor network to collect and deliver information reliably in harsh propagation environment of the forest area, and selected for sensors for monitoring wild vegetation communities on the basis of considerations for selecting the best sensor. In addition, we have presented the platform concept and hierarchical function structures for effectively monitoring, analyzing and predicting of ecosystem changes, to apply the Internet of Things in the ecological monitoring area. Based on this, this paper presents the system architecture and design of the Internet of Things based low-power wireless sensor networks for monitoring the ecosystem of the wild vegetation communities. Finally, we constructed and operated the test-bed applied to real wild trees, using the developed prototype based on the design.

Long-term ecological monitoring in South Korea: progress and perspectives

  • Jeong Soo Park;Seung Jin Joo;Jaseok Lee;Dongmin Seo;Hyun Seok Kim;Jihyeon Jeon;Chung Weon Yun;Jeong Eun Lee;Sei-Woong Choi;Jae-Young Lee
    • Journal of Ecology and Environment
    • /
    • v.47 no.4
    • /
    • pp.264-271
    • /
    • 2023
  • Environmental crises caused by climate change and human-induced disturbances have become urgent challenges to the sustainability of human beings. These issues can be addressed based on a data-driven understanding and forecasting of ecosystem responses to environmental changes. In this study, we introduce a long-term ecological monitoring system in Korean Long-Term Ecological Research (KLTER), and a plan for the Korean Ecological Observatory Network (KEON). KLTER has been conducted since 2004 and has yielded valuable scientific results. However, the KLTER approach has limitations in data integration and coordinated observations. To overcome these limitations, we developed a KEON plan focused on multidisciplinary monitoring of the physiochemical, meteorological, and biological components of ecosystems to deepen process-based understanding of ecosystem functions and detect changes. KEON aims to answer nationwide and long-term ecological questions by using a standardized monitoring approach. We are preparing three types of observatories: two supersites depending on the climate-vegetation zones, three local sites depending on the ecosystem types, and two mobile deployment platforms to act on urgent ecological issues. The main observation topics were species diversity, population dynamics, biogeochemistry (carbon, methane, and water cycles), phenology, and remote sensing. We believe that KEON can address environmental challenges and play an important role in ecological observations through partnerships with international observatories.

Synthesis of Pd/Cu-Fe polymetallic nanoparticles for in situ reductive degradation of p-nitrophenol

  • Wenbin, Zhang;Lanyu, Liu;Jin, Zhao;Fei, Gao;Jian, Wang;Liping, Fang
    • Membrane and Water Treatment
    • /
    • v.13 no.2
    • /
    • pp.97-104
    • /
    • 2022
  • With a small particle size, specific surface area and chemical nature, Pd/Cu-Fe nanocomposites can efficiently remove the organic compounds. In order to understand the applicability for in situ remediation of contaminated groundwater, the degradation of p-nitrophenol by Pd/Cu-Fe nanoparticles was investigated. The degradation results demonstrated that these nanoparticles could effectively degrade p-nitrophenol and near 90% of degradation efficiency was achieved by Pd/Cu-Fe nanocomposites for 120 min treatment. The efficiency of degradation increased significantly when the Pd content increased from 0.05 wt.% and 0.10 wt.% to 0.20 wt.%. Meanwhile, the removal percentage of p-nitrophenol increased from 75.4% and 81.7% to 89.2% within 120 min. Studies on the kinetics of p-nitrophenol that reacts with Pd/Cu-Fe nanocomposites implied that their behaviors followed the pseudo-first-order kinetics. Furthermore, the batch experiment data suggested that some factors, including Pd/Cu-Fe availability, temperature, pH, different ions (SO42-, PO43-, NO3-) and humic acid content in water, also have significant impacts on p-nitrophenol degradation efficiency. The recyclability of the material was evaluated. The results showed that the Pd/Cu-Fe nanoparticles have good recycle performance, and after three cycles, the removal rate of p-nitrophenol is still more than 83%.

Monitoring of Agro-Ecological Environments at Small Watershed (농업유역의 생태환경 모니터링 기법 연구)

  • 박승우;윤광식
    • Journal of Korean Society of Rural Planning
    • /
    • v.2 no.2
    • /
    • pp.91-102
    • /
    • 1996
  • Monitoring techniques for afro-ecological environments were studied, Hydrologic and ecological components in conjunction with water quality were monitored in the Balkan watershed. The hydrologic monitoring program consists of four water level gauging stations along creeks and stream at the watershed having 26.5 km2. Stage - storage relationship of reservoir, rainfall amount of the watershed, and rating curve of the stream gauging stations were established. Soil type, land use, hydrologic soil group, population and economic activities within the watershed were surveyed. Water quality data from the streams were sampled weekly and chemical analysis was conducted. Temporal variations of water quality were investigated and water quality map of each reach of stream was made to identify spatial variations. Seasonal and spatial variations of vegetation densities along stream in the watershed were investigated using grid, Density variations of insect species such as arthropod, flying insect, spider spices, rice insects were also monitored to determine seansonal surveying density. These monitored data will be used to develop monitoring techi%ues and afro - ecological environment models.

  • PDF

Feasibility of Vegetation Temperature Condition Index for monitoring desertification in Bulgan, Mongolia

  • Yu, Hangnan;Lee, Jong-Yeol;Lee, Woo-Kyun;Lamchin, Munkhnasan;Tserendorj, Dejee;Choi, Sole;Song, Yongho;Kang, Ho Duck
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.6
    • /
    • pp.621-629
    • /
    • 2013
  • Desertification monitoring as a main portion for understand desertification, have been conducted by many scientists. However, the stage of research remains still in the level of comparison of the past and current situation. In other words, monitoring need to focus on finding methods of how to take precautions against desertification. In this study, Vegetation Temperature Condition Index (VTCI), derived from Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST), was utilized to observe the distribution change of vegetation. The index can be used to monitor drought occurrences at a regional level for a special period of a year, and it can also be used to study the spatial distribution of drought within the region. Techniques of remote sensing and Geographic Information System (GIS) were combined to detect the distribution change of vegetation with VTCI. As a result, assuming that the moisture condition is the only main factor that affects desertification, we found that the distribution of vegetation in Bulgan, Mongolia could be predicted in a certain degree, using VTCI. Although desertification is a complicated process and many factors could affect the result. This study is helpful to provide a strategic guidance for combating desertification and allocating the use of the labor force.

A Study on the Biotope Planning of Dong-gang River Watershed in Ecological and Landscape Conservation Area (동강 생태·경관보전지역 내 비오톱(Biotope) 조성 계획)

  • Park, Eun Kyoung;Koo, Bon Hak
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.4
    • /
    • pp.115-124
    • /
    • 2013
  • This study was conducted to make a biotop planning and construct 3 types of biotop by each site conditions. Three sites of different types in ecological and scenery conservation area of the Dong-gang river were selected by expert brain-storming process and constructed terrestrial biotops and aquatic biotops. Targets of 3 sites were set up such as constructing a habitat for Kaloula borealis and an ecological education place, building a terrestrial biotopes and monitoring the natural vegetation succession, and constructing a habitat for Luciola unmunsana Doi. The study results can be applied hereafter to ecological restoration projects, after construction of habitat, the priority should be prepare measures of monitoring and maintenance, hereafter continuous study on ecological restoration should be performed actively through construction of biotope and wild animals and plants habitat.

A Study on Yeong-san River Ecological Environment Monitoring based on IoT (IoT 기반의 영산강 생태환경 감시망 연구)

  • Nam, Kang-Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.2
    • /
    • pp.203-210
    • /
    • 2015
  • The ecological environment monitoring system configured with Sensor Node, Gateway, Service Platform, and Web Browser. In this paper, we designed gateway resource tree and service function to do handling in the ecological environment monitoring service. Gateway Service Function based on oneM2M Common Service Function, Gateway Resource Tree configured with Application Part handling Sensor Data and Gateway link handling. lastly Device Registration, Sensing, Control, Profile Management.

Mathematical Evaluation of Response Behaviors of Indicator Organisms to Toxic Materials (지표생물의 독성물질 반응 행동에 대한 수리적 평가)

  • Chon, Tae-Soo;Ji, Chang-Woo
    • Environmental Analysis Health and Toxicology
    • /
    • v.23 no.4
    • /
    • pp.231-245
    • /
    • 2008
  • Various methods for detecting changes in response behaviors of indicator specimens are presented for monitoring effects of toxic treatments. The movement patterns of individuals are quantitatively characterized by statistical (i.e., ANOVA, multivariate analysis) and computational (i.e., fractal dimension, Fourier transform) methods. Extraction of information in complex behavioral data is further illustrated by techniques in ecological informatics. Multi-Layer Perceptron and Self-Organizing Map are applied for detection and patterning of response behaviors of indicator specimens. The recent techniques of Wavelet analysis and line detection by Recurrent Self-Organizing Map are additionally discussed as an efficient tool for checking time-series movement data. Behavioral monitoring could be established as new methodology in integrative ecological assessment, tilling the gap between large-scale (e.g., community structure) and small-scale (e.g., molecular response) measurements.