• Title/Summary/Keyword: Eco-friendly composites

Search Result 85, Processing Time 0.02 seconds

Measurement and Analysis of the Material Behavior of Corrugated Paperboard for Finite Element Analysis (유한요소해석을 위한 골판지 소재의 물성측정 및 분석)

  • Gyu-Yeol Kang;Duk-Geun Bae;Sun-Jong, Noh;Sim-Won Chin;Woo-Jong Kang
    • Composites Research
    • /
    • v.37 no.3
    • /
    • pp.143-149
    • /
    • 2024
  • This paper measures the mechanical properties of corrugated cardboard, an eco-friendly packaging material, and applies these measurements to the MAT_PAPER model in LS-DYNA for finite element analysis. Although MAT_PAPER is primarily designed for modeling the behavior of paper, this research demonstrates its applicability to corrugated cardboard as well. Tensile, compression, and shear behaviors of a corrugated cardboard were measured and analyzed, and based on these results, six yield surfaces were derived and integrated into the MAT_PAPER model. By comparing the finite element analysis of the material tests and the low velocity collapse analysis of the corrugated cardboard square boxes with each experimental results, it was shown that the behavior of corrugated cardboard could be equivalently considered well by the MAT_PAPER model. However, since the model is not rate-dependent, the high strain rate properties of liner materials were measured and used for strain rate correction. Consequently, this matches well with the results of the high-speed compression tests of the corrugated cardboard square boxes.

A Study on Micro-insect Screens Using Coffee Grounds (커피찌꺼기를 활용한 미세방충망 연구)

  • Yu Kyung Lee;Gyuri Kim;Min Ji Woo;Ga In Cho;Donghyeon Lee;Mantae Kim;Dong-Jun Kwon
    • Composites Research
    • /
    • v.37 no.4
    • /
    • pp.363-368
    • /
    • 2024
  • Due to the increase in coffee consumption, the amount of coffee grounds is also increasing, which leads to environmental problems. In order to solve these problems, this study proposes the utilisation of coffee grounds. In particular, the porous structure of coffee grounds was utilised to optimise a micro insect screen for filtering fine dust. To realize the porous structure of coffee grounds, a polar/non-polar separation method using KOH and n-hexane was applied to obtain coffee grounds with increased porosity. In addition, the composition of an eco-friendly adhesive was identified to fix the coffee grounds to the screen, and the conditions for homogeneous adhesion of the coffee grounds to the screen were optimised. As a result, we confirmed the effect of the number of coatings of coffee grounds on the filtering effect of fine dust, and found that two coatings of coffee grounds increased the filtering.

Study on the Eco-friend Frame Sheet with Improved Glasses Temple's Insertion-processibility by Blending Plasticizer of High Specific Heat (친환경 안경테 판재의 심입 가공성 향상을 위한 고비열 가소제 혼입에 관한 연구)

  • Seo, Young Min;Lee, Hae Sung;Lee, Sung Jun;Jung, Sang Won;Kim, Hyun-Chul;Kim, Eun Joo;Go, Young Jun;Choi, Jin Hyun;Lee, Se Guen
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.18 no.1
    • /
    • pp.11-17
    • /
    • 2013
  • Purpose: To improve glasses temple's insert processibility of CA/PEG blend, triacetin with higher specific heat values in the processing temperature range is used as second plasticizer. Methods: The total amount of plasticizer is fixed at 30 wt% by CA. To determine optimal CA/PEG/triacetin blend for glasses frame, blends with different composition ratio were examined by various analysis: thermal properties, mechanical properties, glossiness. Results: Specific heat of the CA/PEG blend increased as the content of triacetin. In CA/PEG/triacetin blends, as triacetin concentration is increased, glass transition temperature is decreased and heat conservation rate of composites is increased. Furthermore, CA/PEG/triacetin blend exhibited higher mechanical properties and similar gloss characterization with CA/PEG blend. Conclusions: It is possible to improve the processibility inserting metal support to CA temple through varying the weight ratio of PEG/triacetin. The extruded sheets of CA/PEG/triacetin blend had better glossiness and mechanical properties than those of CA/PEG blend.

Engineering Character of Ultra Rapid Hardening Concrete-Polymer Composite using CAC and Gypsum Mixed CAC (CAC 및 석고혼입 CAC를 사용한 초속경 콘크리트-폴리머 복합체의 공학적 특성)

  • Koo, Ja Sul;Yoo, Seung Yeup;Kim, Jin Man
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.2
    • /
    • pp.97-105
    • /
    • 2016
  • Recently, application case of the ultra rapid hardening concrete-polymer composite(URHCPC) are increasing to repair for the deterioration of pavement. But it is a major disadvantage that the main material is expensive and has environmental load. For these reasons, the development of the economic, eco-friendly materials is needed. Calcium Aluminate Composite (CAC), produced by rapid cooling of atomizing method with molten ladle furnace slag, is a material capable of improving the economic feasibility and reducing the environmental load of URHCPC. In this paper, the properties of CAC and gypsum mixed CAC (GC) as alternative materials of RSC according to the types of polymer dispersion were studied. The results were as follows; compressive strength, tensile strength, flexural strength, bonding strength and modulus of elasticity of the composites using CAC or GC showed higher values than those of plain proportion in 3 hour. In later age, they were at the same level as the general proportions. URHCPC using BPD as polymer dispersion had superior strength properties generally. But modulus of elasticity was the same level as the case of using a SBR latex. According to these results, CAC or GC can partially substituted for RSC to product the URHCPC. When URHCPC uses the BPD as the polymer dispersion, it can be improved performance.

Polyether Ester by Rubber Content and Rubber According to the Type of Dynamic Vulcanized Properties (TPEE) (폴리에스터계 동적가교물의 고무함량 및 고무종류에 따른 물성)

  • Yun, Ju-Ho;Yun, Jung-Hwan;Ha, Seong-Mun;Kim, Il;Sim, Sang-Eun
    • Elastomers and Composites
    • /
    • v.48 no.1
    • /
    • pp.67-75
    • /
    • 2013
  • E-TPE (Engineering Thermoplastic Polyether Ester) was Ester Elastomer with functional groups as recycling and fast processability. In addition, if the car's lightweight enough to highlight eco-friendly materials that help to improve fuel economy has become. Have all the attributes of the rubber and engineering plastics E-TPE the available temperature area is spacious, heat resistance and oil resistance is excellent but getting attention as a new material in the field of auto parts in the field of electrical and electronic domestic depends entirely on imports by the lack of core technology and has been research and development is urgently needed. In this study, the hard segments, polyester (TPEE) as the base soft elastomers of the segments Ethylen-prophylene-Copolymer and CSM (Choloro sulphonated polyethylene Rubber), VAMAC (Ethylene Acrylic Rubber), NBR (Acrylonitrin Butadiene Rubber), 1, 3-Phenylene-bisoxazoline is dealing with Dynamic Vulcanized by content and added rubber properties, thermal variation observed. As a result, the properties of the dynamic vulcanization with NBR compared to other rubber heat resistance and oil resistance is on the increase.