• 제목/요약/키워드: Echo channel

Search Result 91, Processing Time 0.025 seconds

Stereo Acoustic Echo Canceller Using Difference Components of Channel Signals (채널 신호의 차성분을 이용한 스테레오 음향 반향 제거기)

  • Kim Hyun Tae;Park Jang Sik;Son Kyung Sik
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.119-122
    • /
    • 1999
  • In stereo acoustic echo canceller scheme, adaptive filters coefficients converge very slowly or misconverge to real acoustic echo path in receiving room. This is due to cross-correlation between channel signals. In this paper, new preprocessor using absolute difference factor between stereo signals is proposed to reduce cross-correlation between signals. Computer simulations demonstrate that this preprocessor perform well to the half wave rectifier which has simple and good performance of the several preprocessors in recent papers. When the paths in transmitting room change, performance does not degrade in proposed preprocessor.

  • PDF

Acoustic Echo Cancellation Based on Convolutive Blind Signal Separation Method (Convolutive 암묵신호분리방법에 기반한 음향반향 제거)

  • Lee, Haeng-Woo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.5
    • /
    • pp.979-986
    • /
    • 2018
  • This paper deals with acoustic echo cancellation using blind signal separation method. This method does not degrade the echo cancellation performance even during double-talk. In the closed echo environment, the mixing model of acoustic signals is multi-channel, so the convolutive blind signal separation method is applied and the mixing coefficients are calculated by using the feedback model without directly calculating the separation coefficients for signal separation. The coefficient update is performed by iterative calculations based on the second-order statistical properties, thus estimates the near-end speech. A number of simulations have been performed to verify the performance of the proposed blind signal separation method. The simulation results show that the acoustic echo canceller using this method operates safely regardless of the presence of double-talk, and the PESQ is improved by 0.6 point compared with the general adaptive FIR filter structure.

Hands-free Speech Recognition based on Echo Canceller and MAP Estimation (에코제거기와 MAP 추정에 기초한 핸즈프리 음성 인식)

  • Sung-ill Kim;Wee-jae Shin
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.3
    • /
    • pp.15-20
    • /
    • 2003
  • For some applications such as teleconference or telecommunication systems using a distant-talking hands-free microphone, the near-end speech signals to be transmitted is disturbed by an ambient noise and by an echo which is due to the coupling between the microphone and the loudspeaker. Furthermore, the environmental noise including channel distortion or additive noise is assumed to affect the original input speech. In the present paper, a new approach using echo canceller and maximum a posteriori(MAP) estimation is introduced to improve the accuracy of hands-free speech recognition. In this approach, it was shown that the proposed system was effective for hands-free speech recognition in ambient noise environment including echo. The experimental results also showed that the combination system between echo canceller and MAP environmental adaptation technique were well adapted to echo and noise environment.

  • PDF

Adaptive Decision Feedback Equalizer Based on LDPC Code for the Phase Noise Suppression and Performance Improvement (위상잡음 제거와 성능향상을 위한 LDPC 부호 기반의 적응형 판정 궤환 등화기)

  • Kim, Do-Hoon;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.3A
    • /
    • pp.179-187
    • /
    • 2012
  • In this paper, we propose an adaptive DFE (Decision Feedback Equalizer) based on LDPC (Low Density Parity Check) code for phase noise suppression and performance improvement. The proposed equalizer in this paper is applied for wireless repeater system. So as to meet ever increasing requirements on higher wireless access data rate and better quality of service (QoS), the wireless repeater system has been studied. The echo channel and RF impairments such as phase noise produce performance degradation. In order to remove echo channel and phase noise, we suggest a novel adaptive DFE equalizer based on LDPC code. The proposed equalizer helps to compensate RF impairments and improve the performance significantly better than used independently. In addition, proposed equalizer has less iteration number of LDPC code. So, the proposed equalizer system has low complexity.

The Bi-directional Least Mean Square Algorithm and Its Application to Echo Cancellation (양방향 최소 평균 제곱 알고리듬과 반향 제거로의 응용)

  • Kwon, Oh-Sang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.12
    • /
    • pp.1337-1344
    • /
    • 2014
  • The objective of an echo canceller connected to any end of a communication line such as digital subscriber line (DSL) is to compensate the outgoing transmit signal in the receiving path that the hybrid circuit leaks. The echo canceller working in a full duplex environment is an adaptive system driven by the local signal. Conventional echo canceller that implement the least mean square (LMS) algorithm provides a low computational burden but poor convergence properties. The length of the echo canceller will directly affect both the degree of performance and the convergence speed of the adaptation process. To cancel long time-varying echoes, the number of tap coefficients of a conventional echo canceller must be large, which decreases the convergence speed of the adaptive filter. This paper proposes an alternative technique for the echo cancellation in a telecommunication channel. The new technique employs the bi-directional least mean square (LMS) algorithm for adaptively computing the optimal set of the coefficients of the echo canceller, which is composed of weighted combination of both feedforward and feedback algorithms. Finally, Simulation results as well as mathematical analysis demonstrates that the proposed echo canceller has faster convergence speed than the conventional LMS echo canceller with nearly equivalent complexity of computation.

Accuracy Enhancement of Reflection Signals in Impact Echo Test

  • Lho, Byeong-Cheol
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.924-929
    • /
    • 2003
  • A majority of infrastructures has been deteriorated over time. Therefore, it is very important to verify the quality of construction, and the level of structural deterioration in existing structures, to ensure their safety and functionality. Many researchers have studied non-destructive testing (NDT) methods to identify structural problems in existing structures. The impact echo technique is one of the widely used NDT techniques. The impact echo technique has several inherent problems, including the difficulties in P-wave velocity evaluation due to inhomogeneous concrete properties, deterioration of evaluation accuracy where multiple reflection boundaries exist, and the influence of the receiver location in evaluating the thickness of the tested structures. Therefore, the objective of this paper is to propose an enhanced impact echo technique that can reduce the aforementioned problems and develop a Virtual Instrument for the application via a thickness evaluation technique which has same technical background to find deterioration in concrete structures. In the proposed impact echo technique, transfer function from dual channel system analysis is used, and coherence is improved to achieve reliable data. Also an averaged signal -ensemble- is used to achieve more reliable results. From the analysis of transfer function, the thickness is effectively identified.

A New Double-Talk Detection Algorithm (새로운 동시통화 검출 알고리즘)

  • Jung, Hong-Hee;Kim, Hyun-Tae;Park, Jang-Sik;Son, Kyung-Sik
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.3
    • /
    • pp.281-291
    • /
    • 2008
  • In this paper, we propose a new double talk detection algorithm which detects near end signals with less degradation, tracking echo path variation of echo canceler simultaneously. Our method makes use of a cross-correlation between channel input signals and estimated error signals and a normalized cross-correlation between microphone input signals and estimated error signals. By combing thresholds for these cross-correlations pertinently, this algorithm discriminates between variation of echo path and occurrence of double talk. These two cross-correlation are used to detect double talk periods, tracking echo path variation. During the detection period, adjustive adaptive filter is ceased to prevent the echo canceler from being disturbed by near end signals. Also, the echo canceler will still be kept on for tracking any variation in echo path. Through computer simulation results, it was confirmed that the proposed algorithm shows better performance, tracking echo path variation and detecting the double talk periods, than the Ye et. al's and the NLMS algorithms from ERLE viewpoint.

  • PDF

Performance Characteristics of a 50-kHz Split-beam Data Acquisition and Processing System (50 kHz Split Beam 데이터 수록 및 처리 시스템의 성능특성)

  • Lee, Dae-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.5
    • /
    • pp.798-807
    • /
    • 2021
  • The directivity characteristics of acoustic transducers for conventional single-beam echo sounders considerably limit the detection of fish-size information in acoustic field surveys. To overcome this limitation, using the split-aperture technique to estimate the direction of arrival of single-echo signals from individual fish distributed within the sound beam represents the most reliable method for fish-size classification. For this purpose, we design and develop a split-beam data acquisition and processing system to obtain fish-size information in conjunction with a 50-kHz single-beam echo sounder. This split-beam data acquisition and processing system consists of a notebook PC, a field-programmable gate array board, an external single-transmitter module with a matching network, and four-channel receiver modules operating at a frequency of 50-kHz. The functionality of the developed split-beam data processor is tested and evaluated. Acoustic measurements in an experimental water tank showed that the developed data acquisition and processing system can be used as a fish-sizing echo sounder to estimate the size distribution of individual fish, although an external single-transmitter module with a matching network is required.

A Stereophonic Acoustic Echo Canceller Based on a Multi-channel Lattice Predictor (Multi-channel Lattice Predictor를 이용한 효율적인 스테레오 음향 반향 제거기)

  • Lee Ji Hoon;Park Youngcheol
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.261-264
    • /
    • 2004
  • 본 논문에서 는 muti-channel lattice 예측기를 사용하여 AP(affine projection) 알고리듬을 근사적으로 구현하는 알고리즘을 제안한다. Lattice 예측기의 예측 오차를 사용하여 TDL 필터 계수를 적응적으로 조정함으로써 AP 알고리듬을 근사화한다. 또한 전처리단으로 사용된 lattice 예측기를 TDL 필터와 결합함으로써 기존의 방법보다 계산량을 더욱 줄일 수 있는 알고리듬을 제안한다. 제안된 알고리즘은 기존의 알고리즘보다 적은 계산량을 필요로 하지 만 AP 알고리즘을 보다 근사적으로 구현할 수 있다는 장점이 있다.

  • PDF

The Comparative Analysis Study and Usability Assessment of Fat Suppressed 3D FSPGR T1 Technique and Fat Suppressed Isotropic 3D FSE T1 Technique when Examining MRI of Patient with Triangular Fibrocartilage Complex (TFCC) Tear (삼각 섬유성 연골(TFCC) 손상 환자의 자기공명영상 검사 시 Fat Suppressed 3D FSPGR T1 강조 기법에 대한 Fat Suppressed Isotropic 3D FSE T1 강조 기법의 비교 분석 및 유용성에 관한 평가)

  • Kang, Sung-Jin;Cho, Yong-Keun;Lee, Sung-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.3
    • /
    • pp.105-114
    • /
    • 2016
  • In this study, For assessment of triangular fibrocartilage complex (TFCC) injury, we acquired images by fat suppressed 3D fast spoiled gradient recalled T1 and fat suppressed Isotropic 3D fast spin echo T1 techniques. For quantitative evaluation, measured signal to noise ratio and contrast to noise ratio and verified statistical significance between two imaging techniques by Mann-Whitney U verification. And for qualitative evaluation, marked 4-grade scoring (0: non diagnostic, 1: poor, 2: adequate, 3: good) on shape of TFCC, artifacts by partial volumes, description of the lesions by two radiologist, verified coincidence between 2 observer using Kappa-value verification. We used 3.0 Tesla MR equipment and 8-channel RF coil for imaging acquisition. As quantitative evaluation results, signal to noise ratio and contrast to noise ratio value of Isotropic 3D fast spin echo T1 technique is higher in every image sections, also between two imaging techniques by Mann-Whitney U verification was statistically significant (p < 0.05). As qualitative results, observer 1, 2 marked a higher grade on Isotropic 3D FSE T1 technique, coincidence verification of evaluation results between two observers by Kappa-value verification was statistically significant (p < 0.05). As a result, during MRI examination on TFCC injury, fat suppressed Isotropic 3D fast spin echo T1 technique is considered offering more useful information about abnormal lesion of TFCC.