• Title/Summary/Keyword: Echinochloa

Search Result 419, Processing Time 0.026 seconds

Taxonomic Identity of Echinochloa crus-galli (L.) Beauv. var. crus-galli in Dokdo (독도 돌피의 분류학적 실체)

  • Choi, Kyoung-Su;Son, OGyeong;Son, Sung-Won;Kim, SangJun;Yoo, Kwang-Pil;Park, SeonJoo
    • Korean Journal of Plant Resources
    • /
    • v.26 no.4
    • /
    • pp.457-462
    • /
    • 2013
  • Molecular study were conducted to evaluate taxonomic identities of Echinochloa crus-galli (L.) Beauv. and Echinochloa crus-galli var. echinata (Willd.) Honda in Dokdo. Echinochloa crus-galli complex of two species 26 individuals analyse based on nuclear ribosomal DNA (ITS region) and cpDNA (trnH-psbA, trnL-F). At a result, two species were same sequence. Characters the length of the lemma and the length of the awn traits were identity of the species was unclear. According to, Taxonomy treatments that is based on existent morphological characters should thinks again. On the other hand, in the case of ITS, Echinochloa crus-galli (L.) Beauv. and Echinochloa crus-galli var. echinata (Willd.) Honda at the Dokdo forms from other clades with individuals that is collected at land area and Ulleungdo. These result is showing that is flowing independent evolution trends.

Taxonomic Review of the Genus Echinochloa in Korea (II): Inferred from Simple Sequence Repeats

  • Lee, Jeongran;Kim, Chang-Seok;Lee, In-Yong
    • Weed & Turfgrass Science
    • /
    • v.3 no.3
    • /
    • pp.190-195
    • /
    • 2014
  • Echinochloa (L.) P. Beauv. includes some of the noxious weeds, causing a serious yield loss when they are dominant in the fields. Identification of the Echinochloa is very difficult because many interspecific and intraspecific forms of the species are found. However, it is important to identify the species exactly and to know the genetic diversity of the species for effective weed management. This study was conducted to identify and summarize the Echinochloa species by comparing the genetic variation and relationship among Korean Echinochloa species using SSR. The genetic diversity of 107 individuals, including seven species were assessed using five SSR markers. UPGMA dendrogram generated two clades (I and II) and clade II divided again into two subclades (II-1 and II-2) whereas the model based genetic structure proposed four subpopulations. The two subpopulations were corresponded to clades I and II-1 and the other two were arranged to clade II-2 of the UPGMA dendrogram. We have concluded that E. colona and E. glabrescens might have not distributed in Korea. The biological varieties, praticola and echinata, of E. crus-galli should be treated as E. crus-galli. Korean Echinochloa should be summarized with four species, i.e., E. oryzicola, E. crus-galli, E. esculenta, and E. oryzoides.

Genetic diversity and herbicide resistance of 15 Echinochloa crus-galli populations to quinclorac in Mekong Delta of Vietnam and Arkansas of United States

  • Le, Duy;Nguyen, Chon M.;Mann, Richard K.;Yerkes, Carla N.;Kumar, Bobba V.N.
    • Journal of Plant Biotechnology
    • /
    • v.44 no.4
    • /
    • pp.472-477
    • /
    • 2017
  • Barnyardgrass (Echinochloa crus-galli) is one of the worst weeds in rice (Oryza sativa), but there are few reports about the genetic diversity and herbicide resistance of barnyardgrass in Vietnam. In this study, we used random amplified polymorphic DNA (RAPD) analysis and greenhouse testing to study the genetic diversity and quinclorac resistance levels of 15 Echinochloa crus-galli populations in the Mekong Delta, Vietnam, and the state of Arkansas, U.S. The quinclorac resistance of Echinochloa crus-galli populations in Vietnam was confirmed; 9 populations were resistant to quinclorac with R/S ratios ranging from 1.9 to 6.3. Six oligonucleotide primers produced a total of 55 repeatable bands of which 46 were polymorphic (83.3% average) among the 15 populations. Genetic distance was calculated, and cluster analysis separated the 15 populations into 2 main clusters with the genetic distances within the clusters ranging from 0.09 to 0.39. The two main clusters were divided into 7 subclusters, and the quinclorac resistant and susceptible populations were located randomly within each subcluster. Six out of 13 weed populations from Vietnam belonged to one cluster and a single Echinochloa species. The remaining 7 populations were identified as potentially different species in the Echinochloa genus. Nine Echinochloa populations from Vietnam were tested and identified as quinclorac resistant. The connection between quinclorac resistance levels and weed groups defined by RAPD analysis in the study is unclear; the quinclorac resistance of each resistant population could have evolved individually, regardless of differences in genetic diversity and location of the sampled populations.

Discrimination of Echinochloa colona (L.) Link from other Echinochloa Species using DNA Barcode (국내에 유입되는 열대피(Echinochloa colona) 동정: DNA 바코드 중심)

  • Lee, Jeongran;Kim, Chang-Seok;Lee, In-Yong
    • Weed & Turfgrass Science
    • /
    • v.4 no.3
    • /
    • pp.225-229
    • /
    • 2015
  • Echinochloa colona is one of the most problematic weeds in the paddy fields of the world. In recent years, this species is likely to be introduced in Korea due to global warming, the expansion of international trade including agricultural products, and increasing tourists. We tried to identify the species from Korean Echinochloa crus-galli and E. oryzicola in order to establish the control measures in case of the initial influx. For this study, Echinochloa colona collected from the National Plant Germplasm System, USA were examined and E. crus-galli and E. oryzicola were collected in Korea. It is, however, very difficult to identify for Echinochloa species using morphological characters because of numerous interspecific and intraspecific types found in nature. Thus, we barcoded the species using rbcL, matK, and ITS. All three markers identified E. colona very well from the others. ITS alone may be enough as a DNA barcode for E. colona identification, when considering cost and effectiveness. The barcode sequences were deposited to the National Center for Biotechnology Information database for public use.

Adaptive Diversity of Echinochloa Species to Osmotic Stress

  • Park, Seon-Ju;Yu, Hye-Jin;Yook, Min-Jung;Kim, Do-Soon
    • Weed & Turfgrass Science
    • /
    • v.5 no.4
    • /
    • pp.181-186
    • /
    • 2016
  • Three Echinochloa species inhabit various crop fields with different soil moisture conditions. Therefore, a growthpouch test was conducted to investigate adaptive diversity of six Echinochloa species, three from Korea and three from USA, toosmotic stress by assessing shoot and root growths. Echinochloa crus-galli var. praticola showed the greatest tolerance to osmoticstress in both root ($GR_{50}=1316.3g\;PEG\;L^{-1}$) and shoot ($GR_{50}=212.2g\;PEG\;L^{-1}$) growths, while Korean E. oryzicola was mostsensitive to osmotic stress in both root ($GR_{50}=116g\;PEG\;L^{-1}$) and shoot ($GR_{50}=126.2g\;PEG\;L^{-1}$) growths. Root to shoot (R/S) ratioof Echinochloa crus-galli var. praticola increased with increasing osmotic stress, while that of Korean E. oryzicola decreased, suggestingthat R/S ratio is closely related to osmotic stress tolerance in Echinochloa species. Our results clearly demonstrate that E. crus-galli var.praticola maintains high R/S ratio even under high osmotic stress, which enables this species to well adapt to dry upland condition. Incontrast, while E. oryzicola fails to maintain sufficiently high R/S ratio, resulting in poor adaptability to dry upland condition.

Analysis of Genetic Diversity in Echinochloa Species Using Random Amplified Polymorphic DNAs(RAPDs) Markers (RAPD Marker를 이용한 피 수집종의 유연관계 분석)

  • Kim, Kil-Ung;Sohn, Jae-Keun;Shin, Dong-Hyun;Kim, Kyung-Min;Kim, Hak-Yoon;Lee, In-Jung
    • Korean Journal of Weed Science
    • /
    • v.18 no.1
    • /
    • pp.76-83
    • /
    • 1998
  • Echinochloa species maintained by selling for more than 10 years were classified using random amplified polymorphic DNAs(RAPDs) analysis. Seventy-four decamer of randomly sequence markers were used to classify intraspecific variation irt Echinochloa species. The number of amplification products increased with increasing GC content of the primer in the range between 60% and 70% GC. Single-base substitutions of a primer altered amplification, providing new polymorphisms. The size of amplified DNA was mostly between 0.40kbp and 1.4kbp with the most common bands at 1.1kbp. Echinochloa species were detected with 6 primers which generated 26 polymorphic amplified DNAs. By hierarchical cluster analysis, Echinochloa species collected in Korea were divided into three groups. These results revealed that RAPD markers are useful tools for the determination of genetic variations in Echinochloa species.

  • PDF

Taxonomic Review of the Genus Echinochloa in Korea (I): Inferred from Sequences of cpDNA and nrDNA

  • Lee, Jeongran;Kim, Chang-Seok;Lee, In-Yong
    • Weed & Turfgrass Science
    • /
    • v.3 no.3
    • /
    • pp.183-189
    • /
    • 2014
  • The genus Echinochloa (L.) P. Beauv. comprised of approximately 30-40 species in the tropical and warm temperate regions of the world, including numerous interspecific and intraspecific types which make the genus difficult to identify. As an attempt to identify the species within the genus easier, the taxonomy of the genus Echinochloa, Poaceae in Korea was reviewed on the basis of sequencing data derived from nuclear ribosomal DNA internal transcribed spacer (ITS) and external transcribe spacer and chloroplast DNA trnL intron, trnL-F intergenic spacer and matK regions using a total of 46 accessions representing all the species in Korea. The results of maximum parsimony found separate lineage comprised of E. colona and E. frumentaceae which are not Korean species, but no resolution within Korean Echinochloa species, supporting the suggestion of Yamaguchi group that E. crus-galli, E. oryzoides, and E. esculenta should be considered to belong to the same species. However, the relationship between these three species and the other species, i.e. E. oryzicola should be better understood with more detail studies.

Mathematical Description of Seedling Emergence of Rice and Echinochloa species as Influenced by Soil burial depth

  • Kim Do-Soon;Kwon Yong-Woong;Lee Byun-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.4
    • /
    • pp.362-368
    • /
    • 2006
  • A pot experiment was conducted to investigate the effects of soil burial depth on seedling emergences of rice (Oryza sativa) and Echinochloa spp. and to model such effects for mathematical prediction of seedling emergences. When the Gompertz curve was fitted at each soil depth, the parameter C decreased in a logistic form with increasing soil depth, while the parameter M increased in an exponential form and the parameter B appeared to be constant. The Gompertz curve was combined by incorporating the logistic model for the parameter C, the exponential model for the parameter M, and the constant for the parameter B. This combined model well described seedling emergence of rice and Echinochloa species as influenced by soil burial depth and predicted seedling emergence at a given time after sowing and a soil burial depth. Thus, the combined model can be used to simulate seedling emergence of crop sown in different soil depths and weeds present in various soil depths.

Identification of Echinochloa oryzicola (Vasinger) Vasinger and E. oryzoides (Ard.) Fritsch in Korea (한국 벼과식물 논피와 나도논피의 분류학적 실체)

  • Lee, Jeongran;Kim, Chang-Seok;Lee, In-Yong
    • Korean Journal of Plant Taxonomy
    • /
    • v.43 no.1
    • /
    • pp.56-62
    • /
    • 2013
  • Echinochloa oryzoides (Ard.) Fritsch (Na-do-non-pee), was found at paddy fields of Jeonranamdo on a large scale after a first discovery at Masan, Kyeongsangnamdo. This species was not easily distinguished from rice before flowering at the paddy field because of a similar morphology to rice. It is, however, distinguished from other species of the Korean Echinochloa by reliable morphological characters such as horizontal or drooping panicles at maturity, lower glumes with usually 1/4-2/5 as long as the spikelets, awned lower lemmas, and the number of chromosomes, 2n = 54. Echinochloa oryzicola (Vasinger) Vasinger was distinguished from E. oryzoides by erect panicles, lower glumes with at least 1/2 as long as the spikelets, and the number of chromosomes, 2n = 36.