• 제목/요약/키워드: Eccentricity mass

검색결과 103건 처리시간 0.021초

Seismic responses of asymmetric steel structures isolated with the TCFP subjected to mathematical near-fault pulse models

  • Tajammolian, H.;Khoshnoudian, F.;Bokaeian, V.
    • Smart Structures and Systems
    • /
    • 제18권5호
    • /
    • pp.931-953
    • /
    • 2016
  • In this paper, the effects of mass eccentricity of superstructure as well as stiffness eccentricity of isolators on the amplification of seismic responses of base-isolated structures are investigated by using mathematical near-fault pulse models. Superstructures with 3, 6 and 9 stories and aspect ratios equal to 1, 2 and 3 are mounted on a reasonable variety of Triple Concave Friction Pendulum (TCFP) bearings considering different period and damping ratio. Three-dimensional linear superstructure mounted on nonlinear isolators are subjected to simplified pulses including fling step and forward directivity while various pulse period ($T_p$) and Peak Ground Velocity (PGV) amounts as two crucial parameters of these pulses are scrutinized. Maximum isolator displacement and base shear as well as peak superstructure acceleration and drift are selected as the main engineering demand parameters. The results indicate that the torsional intensification of different demand parameters caused by superstructure mass eccentricity is more significant than isolator stiffness eccentricity. The torsion due to mass eccentricity has intensified the base shear of asymmetric 6-story model 2.55 times comparing to symmetric one. In similar circumstances, the isolator displacement and roof acceleration are increased 49 and 116 percent respectively in the presence of mass eccentricity. Furthermore, it is demonstrated that torsional effects of mass eccentricity can force the drift to reach the allowable limit of ASCE 7 standard in the presence of forward directivity pulses.

Seismic performance of a building base-isolated by TFP susceptible to pound with a surrounding moat wall

  • Movahhed, Ataallah Sadeghi;Zardari, Saeid;Sadoglu, Erol
    • Earthquakes and Structures
    • /
    • 제23권1호
    • /
    • pp.87-100
    • /
    • 2022
  • Limiting the displacement of seismic isolators causes a pounding phenomenon under severe earthquakes. Therefore, the ASCE 7-16 has provided minimum criteria for the design of the isolated building. In this research the seismic response of isolated buildings by Triple Friction Pendulum Isolator (TFPI) under the impact, expected, and unexpected mass eccentricity was evaluated. Also, the effect of different design parameters on the seismic behavior of structural and nonstructural elements was found. For this, a special steel moment frame structure with a surrounding moat wall was designed according to the criteria, by considering different response modification coefficients (RI), and 20% mass eccentricity in one direction. Then, different values of these parameters and the damping of the base isolation were evaluated. The results show that the structural elements have acceptable behavior after impact, but the nonstructural components are placed in a moderate damage range after impact and the used improved methods could not ameliorate the level of damage. The reduction in the RI and the enhancement of the isolator's damping are beneficial up to a certain point for improving the seismic response after impact. The moat wall reduces torque and maximum absolute acceleration (MAA) due to unexpected enhancement of mass eccentricity. However, drifts of some stories increase. Also, the difference between the response of story drift by expected and unexpected mass eccentricity is less. This indicates that the minimum requirement displacement according to ASCE 7-16 criteria lead to acceptable results under the unexpected enhancement of mass eccentricity.

Predicting the seismic behavior of torsionally-unbalanced RC building using resistance eccentricity

  • Abegaz, Ruth A.;Kim, In-Ho;Lee, Han Seon
    • Structural Engineering and Mechanics
    • /
    • 제83권1호
    • /
    • pp.1-17
    • /
    • 2022
  • The static design approach in the current code implies that the inherent torsional moment represents the state of zero inertial torsional moments at the center of mass (CM). However, both experimental and analytical results prove the existence of a large amount of the inertial torsional moment at the CM. Also, the definition of eccentricity by engineers, which is referred to as the resistance eccentricity, is defined as the distance between the center of mass and the center of resistance, which is conceptually different from the static eccentricity in the current codes, defined as the arm length about the center of rotation. The difference in the definitions of eccentricity should be made clear to avoid confusion about the torsion design. This study proposed prediction equations as a function of resistance eccentricity based on a resistance eccentricity model with advantages of (1) the recognition of the existence of torsional moment at the CM, (2) the avoidance of the confusion by using resistance eccentricity instead of the design eccentricity, and (3) a clear relationship of applied inertial forces at the CM and resisting forces. These predictions are compared with the seismic responses obtained from time-history analyses of a five-story building structure under moderate and severe earthquakes. Then, the trend of the resistance eccentricity corresponding to the maximum edge drift is investigated for elastic and inelastic responses. The comparison given in this study shows that these prediction equations can serve as a useful reference for the prediction in both the elastic and the inelastic ranges.

Identifying torsional eccentricity in buildings without performing detailed structural analysis

  • Tamizharasi, G.;Murty, C.V.R.
    • Earthquakes and Structures
    • /
    • 제23권3호
    • /
    • pp.283-295
    • /
    • 2022
  • Seismic design codes permit the use of Equivalent Static Analysis of buildings considering torsional eccentricity e with dynamic amplification factors on structural eccentricity and some accidental eccentricity. Estimation of e in buildings is not addressed in codes. This paper presents a simple approximate method to estimate e in RC Moment Frame and RC Structural Wall buildings, which required no detailed structural analysis. The method is validated by 3D analysis (using commercial structural analysis software) of a spectrum of building. Results show that dynamic amplification factor should be applied on torsional eccentricity when performing Response Spectrum Analysis also. Also, irregular or mixed modes of oscillation arise in torsionally unsymmetrical buildings owing to poor geometric distribution of mass and stiffness in plan, which is captured by the mass participation ratio. These irregular modes can be avoided in buildings of any plan geometry by limiting the two critical parameters (normalised torsional eccentricity e/B and Natural Period Ratio 𝜏 =T𝜃/T, where B is building lateral dimension, T𝜃 uncoupled torsional natural period and T uncoupled translational natural period). Suggestions are made for new building code provisions.

Effects of coupled translational-torsional motion and eccentricity between centre of mass and centre of stiffness on wind-excited tall buildings

  • Thepmongkorn, S.;Kwok, K.C.S.
    • Wind and Structures
    • /
    • 제5권1호
    • /
    • pp.61-80
    • /
    • 2002
  • Wind tunnel aeroelastic model tests of the Commonwealth Advisory Aeronautical Research Council (CAARC) standard tall building were conducted using a three-degree-of-freedom base hinged aeroelastic(BHA) model. Experimental investigation into the effects of coupled translational-torsional motion, cross-wind/torsional frequency ratio and eccentricity between centre of mass and centre of stiffness on the wind-induced response characteristics and wind excitation mechanisms was carried out. The wind tunnel test results highlight the significant effects of coupled translational-torsional motion, and eccentricity between centre of mass and centre of stiffness, on both the normalised along-wind and cross-wind acceleration responses for reduced wind velocities ranging from 4 to 20. Coupled translational-torsional motion and eccentricity between centre of mass and centre of stiffness also have significant impacts on the amplitude-dependent effect caused by the vortex resonant process, and the transfer of vibrational energy between the along-wind and cross-wind directions. These resulted in either an increase or decrease of each response component, in particular at reduced wind velocities close to a critical value of 10. In addition, the contribution of vibrational energy from the torsional motion to the cross-wind response of the building model can be greatly amplified by the effect of resonance between the vortex shedding frequency and the torsional natural frequency of the building model.

마운트편심과 기진력편심이 함정탑재장비의 진동특성에 미치는 영향 (Effects of Mount Eccentricity and External Force Eccentricity on the Vibration Characteristics of Naval Shipboard Equipments Supported by Elastic Mounts)

  • 이현엽;이충현;유원선
    • 대한조선학회논문집
    • /
    • 제54권6호
    • /
    • pp.447-452
    • /
    • 2017
  • A rigid body supported by 4 linear springs has been analyzed, to investigate the effects of eccentricities on the vibration responses for naval shipboard equipments supported by elastic mounts. Considering mount eccentricity (the location of the center of spring reaction forces relative to the mass center) and excitation force eccentricity (the location of the center of the excitation force relative to the mass center), the vibration phenomena have been formulated and discussed. Also, the effects of the eccentricities have been evaluated and discussed for the elastically mounted naval shipboard equipment. Results show that the mount eccentricity has little effects on the structure-borne noise above the natural frequency of the system, however the excitation force eccentricity has significant effects all over the frequency range.

4밸브 디젤기관의 흡기포트 편심이 실린더 내 선회비 특성에 끼치는 영향에 관한 연구 (A Study on the Effects of Intake Port Eccentricity on the In-cylinder Swirl Ratio Characteristics in a 4 Valve Diesel Engine)

  • 이지근;강신재;노병준
    • 한국자동차공학회논문집
    • /
    • 제5권5호
    • /
    • pp.157-169
    • /
    • 1997
  • The effects of intake port eccentricity on the characteristics of in-cylinder swirl ratio in a 4-valve diesel engine having the two intake ports; one is a helical intake port and the other is a tangential intake port were investigated by using the ISM(impulse swirl meter) in steady flow test rig. Swirl ratio($R_s$) and mean flow coefficient($C_{f(mean)}$) with valve eccentricity ratio($N_y$) and axial distance(Z/B) were measured. As the results from this experiment, the characteristics of in-cylinder swirl ratio formed by a 4-valve cylinder head were largely affected by intake port eccentricity. There is a difference in the mass flowrate through the two intake ports, and the mass flowrate through the tangential intake port is 19% more than that of the helical intake port. Therefore, we could know that the effects of the mass flowrate ratio through each intake port besides intake port shape should be conidered.

  • PDF

The effect of accidental eccentricities on the inelastic torsional response of buildings

  • Georgoussis, George K.;Mamou, Anna
    • Structural Engineering and Mechanics
    • /
    • 제75권2호
    • /
    • pp.145-155
    • /
    • 2020
  • This paper investigates the influence of spatial varations of accidental mass eccentricities on the torsional response of inelastic multistorey reinforced concrete buildings. It complements recent studies on the elastic response of structural buildings and extends the investigation into the inelastic range, with the aim of providing guidelines for minimising the torsional response of structural buildings. Four spatial mass eccentricity configurations of common nine story buildings, along with their reversed mass eccentricities subjected to the Erzincan-1992 and Kobe-1995 ground motions were investigated, and the results are discussed in the context of the structural response of the no eccentricity models. It is demonstrated that when the initial linear response is practically translational, it is maintained into the inelastic phase of deformation as long as the strength assignment of the lateral resisting bents is based on a planar static analysis where the applied lateral loads simulate the first mode of vibration of the uncoupled structure.

Seismic progressive collapse assessment of 3-story RC moment resisting buildings with different levels of eccentricity in plan

  • Karimiyan, Somayyeh;Moghadam, Abdolreza S.;Vetr, Mohammad G.
    • Earthquakes and Structures
    • /
    • 제5권3호
    • /
    • pp.277-296
    • /
    • 2013
  • Margin of safety against potential of progressive collapse is among important features of a structural system. Often eccentricity in plan of a building causes concentration of damage, thus adversely affects its progressive collapse safety margin. In this paper the progressive collapse of symmetric and asymmetric 3-story reinforced concrete ordinary moment resisting frame buildings subjected to the earthquake ground motions are studied. The asymmetric buildings have 5%, 15% and 25% mass eccentricity. The distribution of the damage and spread of the collapse is investigated using nonlinear time history analyses. Results show that potential of the progressive collapse at both stiff and flexible edges of the buildings increases with increase in the level of asymmetry in buildings. It is also demonstrated that "drift" as a more easily available global response parameter is a good measure of the potential of progressive collapse rather than much difficult-to-calculate local response parameter of "number of collapse plastic hinges".

편심이 변하는 CD/DVD시스템의 자동 볼 평형장치 설계 지침 (Design Guidelines for the Automatic Ball Balancer in CD/DVD Systems with Varying Eccentricity)

  • 김보현;류제하
    • 소음진동
    • /
    • 제9권2호
    • /
    • pp.387-392
    • /
    • 1999
  • This paper presents design guidelines for the automatic ball balancer in CD/DVD systems with varying eccentricity. In these systems, the size of balancing balls should be limited by the restricted race space so that determination of the number and mass of balls should consider the radii of the race and the balls. In addition, the effects of viscosity and friction also should be taken into account for sufficient balancing. Based on the static equilibrium conditions, the number and mass of balls corresponding to the range of varying eccentricity have been determined. Dynamic simulation with viscosity and friction shows sufficient viscosity must exist to ensure stability and friction between balls and race must be minimized to guarantee accurate balancing.

  • PDF