• 제목/요약/키워드: Eccentric Load

검색결과 227건 처리시간 0.031초

수평식 냉간 다단포머에서 예비성형체와 편심하중을 고려한 Shaft의 성형공정설계 (Process Design of Shaft Considering Effect of Preform and Eccentric Load on Cold Forging Product in Multistage Former of Horizontal Type)

  • 박상수;이정민;김병민
    • 소성∙가공
    • /
    • 제14권1호
    • /
    • pp.57-64
    • /
    • 2005
  • This study deals with the cold forging process design for shaft in the main part of automobile motors with rectangular deep groove. In forging process, the accuracy and die lift is very important because it have influence on reduction of the production cost and the increase of the production rate. Therefore, it is necessary to develop the manufacturing process of shaft by cold forging., process variables are the cropped face angle of billet and the eccentric load of punch. The former is derived from cropping test, the latter is occurred by clearance between container and preform. Also, grooved preform select the process variable for decrease in punch deflection. We investigate that a deflection of punch and a deformation of preform to every process variables. Through this investigation, we suggest the optimal preform and process design, expect to be improved the tool life in forging process.

Head로 횡구속된 편심하중을 받는 R/C기둥의 띠철근비의 영향 (The Effect of Spacing of Transverse Steel on R/C Column Laterally Reinforced with Head Subjected to Eccentric Loading)

  • 윤승조;이우진;김상구;윤용대;서수연;김성수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.62-65
    • /
    • 2006
  • This study investigated the behavior of R/C column confined with headed crossties subjected to eccentric loading. The 16 specimens are designed to have adequate confinement steel, determined by ACI seismic design. The variables studied in this research test are eccentricity to depth ratios, spacing of lateral steel and the anchor type of end of crossties. From the test results, all columns showed similar behavior up to the peak load but those columns laterally confined with head presented more ductile behavior after the peak load. The comparisons indicate that the flexural behavior of confined-concrete columns can be computed resonable accurately by P-M interaction curve.

  • PDF

편심환내의 회전 유동 (Rotating Flows in Eccentric Cylinders)

  • 심우건
    • 한국생산제조학회지
    • /
    • 제6권3호
    • /
    • pp.9-16
    • /
    • 1997
  • A numerical method based on the spectral collocation method is developed for the steady rotating flows in eccentric annulus. Steady flows between rotating cylinders are of interest on lubrication in large rotating machinery. Steady rotating flow is generated by the rotating inner cylinder with constant angular velocity. The governing equations for laminar flow are simplified from Navier-Stokes equations by neglecting the non-linear convection terms. Integrating the pressure round the rotating cylinder based on the half Sommerfeld method, the load on the cylinder is evaluated with eccentricity. The attitude angle and Sommerfeld variable are calculated from the load. It is found that those values are influenced by the eccentricity. The attitude and Sommerfeld reciprocal are decreased with eccentricity. As expected, the effect of the annular gap ratio on them is negligible.

  • PDF

가변속 왕복동형 압축기 크랭크축-베어링계의 동적 거동 해석 (Dynamic Behavior Analysis of a Crankshaft-Bearing System in Variable Speed Reciprocating Compressor)

  • 김태종
    • Tribology and Lubricants
    • /
    • 제17권6호
    • /
    • pp.426-434
    • /
    • 2001
  • The hermetic reciprocating compressor driven by the BLDC motor rotating with variable speeds, is modelled and analyzed for dynamic characteristics. The governing equations of piston, connecting rod and crank-shaft of the reciprocating compression mechanism and characteristics of driving torque of the motor are obtained. Dynamic behavior of the crankshaft supported on 2 journal bearings is analyzed considering compression load and eccentric unbalance for the 4 rotating speeds of crankshaft. And. reaction forces generated from oil film in the journal bearings are analyzed under transient condition using Reynolds' equation. To take into account the dynamic characteristics depending on the variable rotating speeds, comparison on the dynamic behavior of crank-shaft is made for the 4 operating modes of the compressor. Results show that the magnitude of crankshaft locioperating on the lower rotating speeds is more larger than the higher ones due to reduction of inertia force of the reciprocating piston.

Geometrically Nonlinear Analysis of Eccentrically Stiffened Plates

  • Lee, Jae-Wook;Chung, Kie-Tae;Yang, Young-Tae
    • Selected Papers of The Society of Naval Architects of Korea
    • /
    • 제1권1호
    • /
    • pp.91-100
    • /
    • 1993
  • A displacement-based finite element method Is presented for the geometrically nonlinear analysis of eccentrically stiffened plates. A nonlinear degenerated shell element and a nonlinear degenerated eccentric isoparametric beam (isobeam) element are formulated on the basis of Total Agrangian and Updated Lagrangian descriptions. In the formulation of the isobeam element, some additional local decrees of freedom are implementd to describe the stiffener's local plate buckling modes. Therefore this element can be effectively employed to model the eccentric stiffener with fewer D.O.F's than the case of a degenerated shell element. Some detailed buckling and nonlinear analyses of an eccentrically stiffened plate are performed to estimate the critical buckling loads and the post buckling behaviors including the local plate buckling of the stiffeners discretized with the degenerated shell elements and the isobeam elements. The critical buckling loads are found to be higher than the analytical plate buckling load but lower than Euler buckling load of the corresponding column, i.e, buckling strength requirements of the Classification Societies for the stiffened plates.

  • PDF

편심을 받은 고강도 콘크리트 기둥의 출력-모멘트 강도에 관한 실험 및 해석적 연구 (An Experimental and Analytical Study on Axial Force-Moment Capacity of High-Strength Concrete Column under Eccentric Loads)

  • 최창익;손혁수;이재훈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 봄 학술발표회 논문집
    • /
    • pp.468-474
    • /
    • 1997
  • High strength concrete is a more effective material for columns subject to axial force and moment than for other structural elements. The purpose of this study is to review strength calculation methods for high strength concrete columus by comparison of analytical values and experimental results. The variables of column test under eccentric loading were concrete compressive strength, longitudinal steel ratio, and eccentricity of load. The tied column sections of 120×120mm and 210×210mm were tested and the eccentricity of load varied in the range from 0.16 times to 0.54 times the column depth. The analytical results using the stress-strain relationship to 0.54 times the column depth. The analytical results using the stress-strain relationship as well as the ACI's rectangular block, Zia's modified block, and the trapezoidal block are compared with experimentally obtained data, and discussed in this paper.

  • PDF

Software for adaptable eccentric analysis of confined concrete circular columns

  • Rasheed, Hayder A.;El-Fattah, Ahmed M. Abd;Esmaeily, Asad;Jones, John P.;Hurst, Kenneth F.
    • Computers and Concrete
    • /
    • 제10권4호
    • /
    • pp.331-347
    • /
    • 2012
  • This paper describes the varying material model, the analysis method and the software development for reinforced concrete circular columns confined by spiral or hoop transverse steel reinforcement and subjected to eccentric loading. The widely used Mander model of concentric loading is adapted here to eccentric loading by developing an auto-adjustable stress-strain curve based on the eccentricity of the axial load or the size of the compression zone to generate more accurate interaction diagrams. The prediction of the ultimate unconfined capacity is straight forward. On the other hand, the prediction of the actual ultimate capacity of confined concrete columns requires specialized nonlinear analysis. This nonlinear procedure is programmed using C-Sharp to build efficient software that can be used for design, analysis, extreme event evaluation and forensic engineering. The software is equipped with an elegant graphics interface that assimilates input data, detail drawings, capacity diagrams and demand point mapping in a single sheet. Options for preliminary design, section and reinforcement selection are seamlessly integrated as well. Improvements to KDOT Bridge Design Manual using this software with reference to AASHTO LRFD are made.

불균형 휨모멘트를 받는 플랫플레이트-기둥 접합부의 편심전단강도 (Strength Model for Eccentric Shear of Flat Plate-Column Connections under Unbalanced Moment)

  • 최경규;박홍근
    • 콘크리트학회논문집
    • /
    • 제16권2호
    • /
    • pp.229-240
    • /
    • 2004
  • 불균형 휨모멘트를 재하받는 플랫플레이트-기둥 접합부의 편심전단강도와 모멘트강도를 규명하기 위해 그동안 많은 실험연구가 수행되어 왔다. 기존 실험들은 서로 다른 실험방식을 사용하고 있는데, 접합부의 전단강도는 실험방식에 따라 차이가 있는 것으로 나타났다. 따라서 기존 실험에 근거하여 개발된 현행 설계기준들은 플랫플레이트의 강도를 정확히 설명하고 있지 못한 실정이다. 선행 연구에서는 연속 플랫플레이트에 대한 비선형 유한요소해석에 근거하여, 슬래브-기둥 접합부에 패한 새로운 설계방법을 개발하였다. 그러나 제안된 설계방법에서는 휨모멘트 강도산정에 필요한 접합부 편심강도를 경험식에 의존하여 산정하고 있다. 본 연구에서는, 접합부 파괴 메카니즘을 분석하기 위해서, Rankine 재료파괴기준을 이용하는 이론적인 접근법을 채택하였다. 분석결과에 근거하여 개선된 편심전단강도모델이 개발되었고, 기존 실험과의 비교를 통해 검증되었다. 개발된 강도식을 이용하여, 선행연구에서 개발된 설계방법을 재검증하였다.

불균형 휨모멘트를 받는 플랫 플레이트-기둥 외부접합부의 강도 (Strength of Exterior Flat Plate-Column Connections Subjected to Unbalanced Moment)

  • 최경규;박홍근
    • 콘크리트학회논문집
    • /
    • 제15권3호
    • /
    • pp.470-481
    • /
    • 2003
  • 플랫 플레이트 구조의 외부접합부는 편심전단에 대해 비대칭형의 위험단면을 가지고 있으며, 위험단면의 길이가 내부접합부 보다 작고 중력하중과 횡하중 모두에 의해 편심전단응력이 발생하게 되므로 뚫림전단파괴에 대해 대단히 취약하다. 외부접합부의 거동은 대단히 복잡하며 또한 구조해석에서 사용하고 있는 강도모델이 부적합하기 때문에, 현 설계기준은 실험결과를 정확히 설명하고 있지 못하다. 본 연구에서는 이러한 현 설계기준의 미비점을 보완하기 위하여 슬래브-기둥 외부접합부에 대해 비선형유한요소해석을 수행하였다. 외부접합부에서는 횡하중의 재하방향에 따라 거동 및 최대강도가 상이하며, 해석결과에 근거하여 하중재하방향 별로 외부접합부에 대한 강도모델을 제안하였다. 제안된 강도모델은 실험결과와의 비교를 통해 검증되었다.

Experimental behavior of eccentrically loaded R.C. short columns strengthened using GFRP wrapping

  • Elwan, S.K.;Rashed, A.S.
    • Structural Engineering and Mechanics
    • /
    • 제39권2호
    • /
    • pp.207-221
    • /
    • 2011
  • This paper aims to study the behavior of short reinforced concrete columns confined with external glass Fiber Reinforced Polymers (GFRP) sheets under eccentric loads. The experimental part of the study was achieved by testing 9 specimens under eccentric compression. Three eccentricity ratios corresponding to e/t = 0, 0.10, 0.50 in one direction of the column were used. Specimens were divided into three groups. The first group was the control one without confinement. The second group was fully wrapped with GFRP laminates before loading. The third group was wrapped under loading after reaching 75% of failure loads of the control specimens. The third group was investigated in order to represent the practical case of strengthening a loaded column with FRP laminates. All specimens were loaded until failure. The results show that GFRP laminates enhances both failure load and ductility response of eccentrically loaded column. Moreover, the study also illustrates the effect of confinement on the first crack load, lateral deformation, strain in reinforcement and failure pattern. Based on the analysis of the experimental results, a simple model has been proposed to predict the improvement of load carrying capacity under different eccentricity ratios. The predicted equation takes into consideration the eccentricity to cross section depth ratio, the ultimate strength of GFRP, the thickness of wrapping laminate, and the time of wrapping (before loading and under loading). A good correlation was obtained between experimental and analytical results.