• Title/Summary/Keyword: Eccentric Drive System

Search Result 11, Processing Time 0.024 seconds

Center Compensation Servo and Eccentric Compensation Control for High Speed CD-RW Drive System (고배속 CD-RW Drive를 위한 중점 서보 및 편심 보상 제어)

  • Kim Dongwon;Park Gwi-Tae;Seo Sam-Jun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.12
    • /
    • pp.1202-1209
    • /
    • 2004
  • This paper presents a design methodology of a Digital Servo Signal Processor for high speed CD-RW drive systems. The proposed Digital Servo Signal Processor enables us to develop CD-related systems for the very high speed applications and is one of the key components of the CD-RW systems. The proposed center compensation servo control is newly built for an actuator shaking due to the fast response of a step motor when it jumps to a long distance. A control method compensating for eccentricity of a disc is implemented for operating robustly at a higher rotational speed. This servo mechanism is more size efficient and less power consumed because it is implemented using a ARM7 embedded processor and hardware digital filters. Furthermore, it is convenient to upgrade firmware for the future required functions. From experimental results, we can see that the performance of the control system is improved greatly. The proposed servo algorithm shows a shorter setting time including a pull-in time and a faster access time. It can be applied easily to the DVD-ROM and the DVD-RAM which have the same optical structure.

Study on Flow Characteristics for Eccentric Shaft in the Butterfly Valve System (축편심 버터플라이 밸브의 유동특성에 관한 연구)

  • Park, S.M.;Choi, H.K.;Yoo, G.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.587-591
    • /
    • 2011
  • To improve the performance of the control butterfly valve seals are used to eccentric shaft. In this case, vertical opening gas of the butterfly valve is non-symmetrical, which will change the flow pattern around the valve. In this study, the eccentric drive shaft of the butterfly valve to change flow characteristics are performed numerically. Flow pattern and pressure drop are investigated as the valve opening angle increases for a given mass flow rate. The valve flow coefficient is compared to the without eccentric shaft.

  • PDF

Analysis of Speed Ripple Reduction Methods for Permanent Magnet Synchronous Motor with Eccentric-weight Load (편심 무게 부하를 갖는 영구자석 동기 전동기의 속도리플 저감기법 분석)

  • 박정우;김종무;이기욱
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.3
    • /
    • pp.164-172
    • /
    • 2004
  • This paper presents the comparison results of some kinds of control method in circumstance of eccentric load. The plant to be controlled is a computed tomography(CT) driven by a permanent magnet synchronous motor. In a CT system, many units are attached on the rotationally part of a gantry such as x-ray tube, detector, heat exchanger, and data acquisition unit etc. Therefore keeping many components to balance which have different weight is not easy; this is inescapable problem in the all CT systems. To solve this problem against eccentric load, some kinds of control method have been compared and analysed by using protype CT. From the experimental results it is vilified that the CT drive system with model reference control method indicates higher speed regulation ability regardless of variable eccentric weight and uncertain position, and also in the limit condition of constant eccentric weight and fixed position, the compensation method with sinusoidal form is a strong candidate in view of speed ripple reduction.

Asymptotic Disturbance Rejection using a Disturbance Observer in the Track-Following Control System of a High-Speed Optical Disk Drive (고배속 광디스크 드라이브 트랙 추종 제어 시스템에서의 외란 관측기를 이용한 점근적 외란 제거)

  • 유정래;문정호;진경복;정명진
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.5
    • /
    • pp.402-410
    • /
    • 2004
  • To obtain a good tracking performance in an optical disk drive servo system, it is essential to attenuate periodic disturbances caused by eccentric rotation of the disk. As an effective control scheme for enhancing disturbance attenuation performance, disturbance observers (DOBs) have been successfully applied to the track-following servo system of optical disk drives. In disk drive systems, the improvement of data transfer rate has been achieved mainly by the increase of disk rotational speed, which leads to the increase of the disturbance frequency. Conventional DOBs are no longer effective in disk drive systems with a high-speed rotation mechanism because the performance of conventional DOBs is severely degraded as the disk rotational frequency increases. This paper proposes a new DOB structure for effective rejection of the disturbance in optical disk drives with a very high rotation speed. Asymptotic disturbance rejection is achieved by adopting a band-pass filter in the DOB structure, which is tuned based on the information on the disturbance frequency. In addition, performance sensitivity of the proposed DOB to changes in disk rotational frequency is analyzed. The effectiveness of the proposed DOB is verified through simulations and experiments using a DVD-ROM drive.

Hybrid Technology using 3D Printing and 5-axis Machining for Development of Prototype of the Eccentric Drive System (편심구동장치 시제품 개발을 위한 3D프린팅-5축가공 복합기술)

  • Hwang, Jong-Dae;Yang, Jun-Seok;Yun, Sung-Hwan;Jung, Yoon-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.2
    • /
    • pp.38-45
    • /
    • 2016
  • Since a 5-axis machine tool has two rotary axes, it offers numerous advantages, such as flexible accessibility, longer tool life, better surface finish, and more accuracy. Moreover, it can conduct whole machining by rotating the rotary feed axes while setting the fixture at once without re-fixing in contrast to conventional 3-axis machining. However, it is difficult to produce complicated products that have a hollow shape. In contrast, 3D printing can produce an object with a complicated hollow shape easily and rapidly. However, because of layer thickness and shrinkage, its surface finish and dimensional accuracy are not adequate. Therefore, this study proposes hybrid technology by integrating the advantages of these two manufacturing processes. 3D printing was used as the additive manufacturing rapidly in the whole body, and 5-axis machining was used as the subtractive manufacturing accurately in the joining and driving places. The reliability of the proposed technology was verified through a comparison with conventional technology in the aspects of processing time, surface roughness. and dimensional accuracy.

A Dual-Stage Servo System for an NFR Disk Drive using Iterative Learning Control (반복 학습 제어를 이용한 NFR 디스크 드라이브의 2단 서보 시스템)

  • 문정호;도태용
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.4
    • /
    • pp.277-283
    • /
    • 2003
  • Recently, near-field recording (NFR) disk drive schemes have been proposed with a view to increasing recording densities of hard disk drives. Compared with hard disk drives. NFR disk drives have narrower track pitches and are exposed to more severe periodic disturbances resulting from eccentric rotation of the disk. It is difficult to meet servo system design specifications for NFR disk drives with conventional VCM actuators in that the servo system for an NFR disk drive generally requires a feater gain and higher bandwidth. To tackle the problem various dual-stage actuator systems composed of a microactuator mounted on top of a conventional VCM actuator have been proposed. This article deals with the problem of designing a tracking servo system far an NFR disk drive adopting a dual-stage actuator. We summarize design constraints pertaining to the dual-stage servo system and present a new servo scheme using iterative teaming control. We design feedback compensators and an iterative teaming controller for a target plant and verify the validity of the proposed control scheme through a computer simulation.

Design of a Multiobjective Robust Controller for the Track-Following System of an Optical Disk Drive (광 디스크 드라이브의 트랙킹 서보 시스템을 위한 다목적 강인 제어기의 설계)

  • 이문노;문정호;정명진
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.5
    • /
    • pp.592-599
    • /
    • 1998
  • In this paper, we design a tracking controller which satisfies transient response specifications and maintains tracking error within a tolerable limit for the uncertain track-following system of an optical disk drive. To this end, a robust $H_{\infty}$ control problem with regional stability constraints and sinusoidal disturbance rejection is considered. The internal model principle is used for rejecting the sinusoidal disturbance caused by eccentric rotation of the disk. We show that a condition satisfying the regional stability constraints can be expressed in terms of a linear matrix inequality (LMI) using the Lyapunov theory and S-procedure. Finally, a tracking controller is obtained by solving an LMI optimization problem involving two linear matrix inequalities. The proposed controller design method is evaluated through an experiment.

  • PDF

Repetitive Control for Track-Following Servo of an Optical Disk Drive Using Linear Matrix Inequalities (선형 행렬 부등식을 이용한 광 디스크 드라이브의 트랙 추종 서보를 위한 반복 제어)

  • 도태용;문정호
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.2
    • /
    • pp.117-123
    • /
    • 2003
  • Rotational machines such as optical disk drives, hard disk drives, and so on are subject to periodic disturbances caused by their mechanical characteristics. In the meanwhile, it is well known that repetitive control rejects periodic disturbance effectively. This paper presents a practical application of repetitive control to the track-following servo of an optical disk drive. The repetitive control system is composed of two repetitive controllers which compensate for periodic disturbances generated by track geometry and eccentric rotation of disk and a feedback controller stabilizing the feedback loop. A robust stability for all plant uncertainties is proved using linear matrix inequalities (LMIs). In the controller design, a weighting function is introduced for the feedback controller to ensure a minimum loop gain and a sufficient phase margin. The repetitive controllers and the feedback controller are designed by solving an optimization problem which can consider the robust stability condition and the system performance. The developed repetitive control system is implemented in the digital control system with a 16-bit fixed-point digital signal processor (DSP). Through simulation and experiment. The feasibility of the proposed repetitive control system is verified.

Design of Crank Drive System Based on Gait Pattern for Stand-up Bicycle (보행패턴을 접목한 직립주행 자전거용 크랭크 구동장치의 거동분석)

  • Hyeong, Joonho;Roh, Jongryun;Kim, Sayup
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.10
    • /
    • pp.991-996
    • /
    • 2017
  • Gait stability is partly characterized by an extended stance phase that comprises 60 of the gait % cycle. In this study, a gait pattern was employed for a crank drive system that allows for stable lower limb kinematics during stand-up cycling. A quick return mechanism was applied to the crank system to allow for a slow rotation of the crank during the stance phase and for a quick return during the swing phase. Design parameters for the quick return crank mechanism were defined, and kinematic simulations were performed to understand the behavior of the mechanism. To evaluate the design, an experimental instrument was fabricated, and the cycling motion was analyzed. The results indicated that this new drive system can stabilize the center of mass of the user. This study can contribute to the development of a stand-up bicycle that allows for more comfortable leg kinematics.

A New Correction Algorithm of Servo Track Writing Error in High-Density Disk Drives (고밀도 디스크 드라이브의 서보트랙 기록오차 보정 알고리즘)

  • 강창익;김창환
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.4
    • /
    • pp.284-295
    • /
    • 2003
  • The servo tracks of disk drives are constructed at the time of manufacture with the equipment of servo track writer. Because of the imperfection of servo track writer, disk vibrations and head fluctuations during servo track writing process, the constructed servo tracks might deviate from perfect circles and take eccentric shapes. The servo track writing error should be corrected because it might cause interference with adjacent tracks and irrecoverable operation error of disk drives. The servo track writing error is repeated every disk rotation and so is periodic time function. In this paper, we propose a new correction algorithm of servo track writing error based on iterative teaming approach. Our correction algorithm can learn iteratively the servo track writing error as accurately as is desired. Furthermore, our algorithm is robust to system model errors, is computationally simple, and has fast convergence rate. In order to demonstrate the generality and practical use of our work, we present the convergence analysis of our correction algorithm and some simulation results.