• Title/Summary/Keyword: East and South coast of Korea

Search Result 297, Processing Time 0.028 seconds

Characteristics and Trends of Spatiotemporal Distribution of Frost Occurrence in South Korea for 21 Years (21년간 한국의 서리발생 시·공간 분포 특성과 경향)

  • Jo, Eunsu;Kim, Hae-Min;Shin, Ju-Young;Kim, Kyu Rang;Lee, Yong Hee;Jee, Joonbum
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.2
    • /
    • pp.83-94
    • /
    • 2022
  • In order to actively prepare to frost damage that occurs in the process of growing crops, the spatial and temporal distribution of frost occurrence in South Korea was derived using frost observation data from 20 regions over the past 21 years (2000~2020). The main products are the number of frost days, first frost day, and last frost day by region. And the climatic trends of these results were identified by performing the Mann-Kendall trend test and Sen's slope estimator. In South Korea, a lot of frost occurs in the inland area to the west of the Taebaek and Sobaek Mountains. Relatively closer to the coastal area, the number of frost days is small, the first frost day is slow, and the last frost day is early. The east coast region has fewer frost days, the first frost day is later, and the last frost day is earlier than the west coast region. The southern sea, the southeastern sea region, and the island region rarely experience frost. As a result of the annual time series trend analysis, although South Korea is a country where climate warming is progressing, there was no trend in reducing the number of frost days and slowing the first frost day, and it was found that the last frost day is delayed by 0.5 days per year.

A Review on Ocean Acidification and Factors Affecting It in Korean Waters (우리나라 주변 바다의 산성화 현황과 영향 요인 분석)

  • Kim, Tae-Wook;Kim, Dongseon;Park, Geun-Ha;Ko, Young Ho;Mo, Ahra
    • Journal of the Korean earth science society
    • /
    • v.43 no.1
    • /
    • pp.91-109
    • /
    • 2022
  • The ocean is a significant sink for atmospheric anthropogenic CO2, absorbing one-third of the total CO2 emitted by human activities. In return, oceans have experienced significant declines in seawater pH and the aragonite saturation state also called ocean acidification. This study evaluates the distribution of aragonite saturation state, an indicator to assess the potential threat from ocean acidification, by combining newly obtained data from the west coast of South Korea with previous datasets covering the Yellow Sea, East Sea, northern South China Sea, and southeast coast of South Korea. In general, offshore waters absorb atmospheric CO2; however, most of the collected water samples show aragonite oversaturation. On the southeast coast, the aragonite saturation state was significantly affected by river discharge and associated variables, such as freshwater input with nutrients, seasonal stratification, biological carbon fixation, and bacterial remineralization. In summer, hypoxia and mixing with relatively acidic freshwater made the Jinhae and Gwangyang Bays undersaturated with respect to aragonite, possibly threatening marine organisms with CaCO3 shells. However, widespread aragonite undersaturation was not observed on the west coast, which receives considerable river water discharge. In addition, occasional upwelling events may have worsened the ocean acidification in the southwestern part of the East Sea. These results highlight the importance of investigating site-specific ocean acidification processes in coastal waters. Along with the above-mentioned seasonal factors, the dissolution of atmospheric CO2 and the deposition of atmospheric acidic substances will continue to reduce the aragonite saturation state in Korean waters. To protect marine ecosystems and resources, an ocean acidification monitoring program should be established for Korean waters.

A Review of Taxonomic Studies of Batoids (Chondrichthyes: Batoidea) from East Asian Waters (동아시아 수역의 가오리상목의 분류학적 검토)

  • Jeong, Choong-Hoon
    • Korean Journal of Ichthyology
    • /
    • v.21 no.sup1
    • /
    • pp.73-73
    • /
    • 2009
  • The modern cartilaginous fishes, class Chondrichthyes, are small group of Pisces, and comprisingmore 1,000 described valid species, and including approximately 190 genera, 55 families, and 15 orders. The Chondrichthyes consists of two subclasses, the Holocephali (chimeras) and the Elasmobranchii(sharks and rays). The dominant subclass Elasmobranchii includes sharks (Selachii) and rays (Batoidea), the former is more diverse than the latter in higher taxa (order, family, genus) but has fewer species. The Batoidea, batoids or rays, has long been recognized as monophyletic, however, the interrelationships of the groups are problematic and uncertain. In order to review biodiversity and systematics of batoids, valid species name and supraspecific taxa from the published materials are studied. Batoids (including sawfishes, Pristiformes; electric rays, Torpediniformes; stingrays, Myliobatiformes; skates, Rajiformes; wedgefishes, Rhiniformes; and guitarfishes, Rhinobatiformes) is speciose and worldwide with about 580 species in 4 to 6 orders, 17 to 19 families, and about 75 genera. In East Asian waters, the previous records of the Batoidea reveal about 170 species belonging to 41 genera, 18 families, 6 orders. The largest group of batoid fauna in the area is order Myliobatiformes comprising about 80 species, 16 genera of 7 families. The predominant families are Dasyatidae (whiptail stingrays: 46 spp. of 6 genera), Arhynchobatidae (softnose skates: 26 spp. of 3 genera), and Rajidae (skates: 21 spp. of 6 genera). The predominant genera are Bathyraja (softnoseskates: 20 spp.), Himantura (whiprays:19spp.), and Dasyatis (fantailstingrays: 18 spp.). There are 23 species in the Yellow Sea, 70 species in the East China Sea, 82 species in the South China Sea, and 58 species in the North Pacific coast of Japan. Batoid fauna from the East Sea (Sea of Japan) is the poorest of the five regions, consisting of 14 species. Korean waters include only 28 species, 16 genera, 10 families and 5 orders of batoids. Two species is torpediniforms, 4 rhinobatiforms, arhynchobatiforms, 11 rajiforms and 10 myliobatiforms. By the earlier works, the systematics and a check list of the valid species of batoids will be presented.

Submarine Geology of Continental Margin of the East Sea, Korea (한국(韓國) 동해대륙단(東海大陸端) 해저지질(海底地質))

  • Kim, Chong Su
    • Economic and Environmental Geology
    • /
    • v.15 no.2
    • /
    • pp.65-88
    • /
    • 1982
  • In the last ten years, marine geological and geophysical survey and research were conducted by Japanese, Russian and American scientists in the East Sea of Korea (Japan Sea). Many research results were published. However, regional research of the geology of the continental margin of the Korean Peninsula was not conducted. This study has made on attempt to classify submarine strata and stratigraphic boundaries. The study has revealed characters of submarine geology and structure. Isopach maps of each identified stratigraphic unit have been constructed as the results of this study. The study was conducted on the basis of analyses of marine seismic surveys carried out in the continental margin of the East Sea between Kangneung and Pohang. Three depositional basins were identified in the study area and they were named as, Mukho Basin, Hupo Basin and Pohang Basin. The Mukho Basin is developed in continental slope and shelf in the area between Kangneung and Samcheog. Quaternary and Pliocene sediments attain a maximum thickness of 900 m. Basement rocks are interpreted as granite and gneiss. They are correlated with granite-gneiss of the Taebaecksan Series of Pre-cambrian age and the Daebo granite of Jurassic age. The Hupo Basin is developed in the continental shelf between Uljin and Youngdeok. Quaternary and Pliocene sediments attain a maximum thickness of 600 m. Basement rocks were interpreted as granite and gneiss and they are correlated with metamorphic rocks of Pre-cambrian age and the Daebo granites, comprising the Ryongnam Massif. The Pohang Basin is developed in the area between Pohang and Gangu. This basin contains Miocene and older sediments. Basement rocks are not shown. Many faults are developed within the continental shelf and slope. These faults strike parallel with the coast line. A north-south direction is predominant in the southern study area. However, in the northern study area the faults strike north, and north-west. The faults are parallel to each other and are step faults down-thrown to the east or west, forming horst and graben structures which develop into sedimentary basins. Such faults caused the development of submarine banks along the boundary between the continental shelf and slope. This bank has acted as a barrier for deposition in the Hupo Basin. Paleozoic sedimentary rocks distributed widely in the adjacent land area are absent in the Mukho Basin. This suggests that the area of the basin was situated above the sea level until the Pliocene time. The study area contains Pliocene sediments in general. These sediments overlie the basement complex composed of metamorphic rocks, granites, Cretaceous (Kyongsang System) sedimentary rocks and Miocene sedimentary rocks. These facts lead to a conclusion that the continental shelf and slope of the study area were developed as a result of displacements along faults oriented parallel to the present coast line in the post Miocene time.

  • PDF

Comparative Folklore Study on Gut in West Coast Area case of a mock hunting and animal sacrifice (황해도굿의 비교민속학적고찰 모의사냥과 동물공희를 중심으로)

  • Im, Jang Hyun
    • Korean Journal of Heritage: History & Science
    • /
    • v.42 no.4
    • /
    • pp.132-151
    • /
    • 2009
  • Gut (Shaman ritual) in the west coast area is consisted to sanyang-geori (hunting), tasal-geori, gunwoong-geori those describe from hunting process to preparing animal sacrifices to a deity. The characteristic of gut in the west coast area which are represented for mock hunting and animal sacrifice ritual is practicing at the sibamasturi in Japan. This paper aims to compare a shaman ritual in west coast area in Korea and Japanese Sibamasturi from the comparative folklore point of view. Gut in the west coast area is well known for dividing sacrificial offering: vegetable for sinryeong and meat for singyeong. This division of spiritual deity shows it has different background from agriculture and hunting culture. Hwanghae-do gut has been formed under the various life environments. Therefore, each stage is conducted according to the purpose of the ritual. Sanyang-geori (hunting) represents the scene of hunting in the mountain and by catching live animals and it refers to Gunwoonsin, and will be offered. Animal sacrifice is a positive ritual which get rid of bad luck and pleased deity. Sibamasturi is practiced in mountain area where most of people involve in hunting and agriculture. Therefore, this area has both agricultural ritual and hunting ritual. Sibamasturi is practiced in January (lunar) and it also has meaning of beginning of agriculture and hunting in mountain area. Ground burnt off for cultivation way symbolizesfire ritual and mock hunting as well as animal sacrifice together. These rituals match to farmers of mountain area in the south-east Asia. The gut in the west coast area and Japanese Sibamasturi have common point that mock hunting and animal sacrifice are practiced at both rituals, however, the structure for these two ritual are different. In other word, there animal sacrifice has been formed with different cultural back ground.

Plastic Marine Debris Used as Nesting Materials of the Endangered Species Black-Faced Spoonbill Platalea minor Decreases by Conservation Activities (멸종위기종 저어새의 둥지 재료로 사용되는 플라스틱 해양 쓰레기가 보호 활동으로 줄어들다)

  • Lee, Kisup;Jang, Yong Chang;Hong, Sunwook;Lee, Jongmyoung;Kwon, In Ki
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.1
    • /
    • pp.45-49
    • /
    • 2015
  • Disturbance to marine wildlife is a serious negative impact of marine debris. In this study, the percentages of Black-faced Spoonbill nests that included plastic marine debris were calculated from surveys conducted on an islet named Suhaam off the western coast of South Korea. The percentages of nests including plastic decreased from 71% in 2010 to 37% in 2011 to 33% in 2012. The total number of nests increased from 28 in 2010 to 38 in 2011 to 43 in 2012. These differences in nests and nesting materials were possibly due to natural nesting materials such as tree branches and rice straws that were provided at the breeding site as a protective action in 2011 and 2012. Additional conservation efforts should be made to prevent further negative impacts from marine debris.

Effect of El Niño and La Niña on the Coastal Upwelling in East Sea, South Korea (엘니뇨와 라니냐가 한국 동해 연안용승에 미치는 영향)

  • Seo, Ho-San;Kim, Dong-Sun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.1
    • /
    • pp.75-83
    • /
    • 2020
  • This study investigated the effects of El Niño and La Niña on coastal upwelling in the East Sea of Korea using long-term (1967-2017) water temperature observation data and Oceanic Niño Index (ONI). As a result of time series analysis of water temperature, the occurrence frequency of summer coastal upwelling was the highest in the southeastern (Ulgi ~ Gimpo) coast. In 1987-1988 and 1997-1998, when the annual fluctuations of ONI plunged more than 2.5, the water temperature in whole coast areas of the East Sea (Busan ~ Goseung) rose by 4 ~ 7 ℃. The temperature structure of the East Sea coastal water was different when El Niño was strong with ONI above 1.5 and La Niña with strong ONI below -0.8. When El Niño is strong, the water temperature anomaly in coastal waters is negative. This is due to the strong baroclinic tilting and the formation of shallow temperature stratification in the coastal waters. The strong La Niña season is opposite to the strong El Niño season, whereas the water temperature anomaly is positive. In addition, the baroclinic tilting is weaker than the time of strong El Niño and the temperature stratification is formed deeper than the time of strong El Niño. The formation of temperature stratification at shallow depths when El Niño is strong can increase the probability of occurrence coastal upwelling caused by southerly winds in the summer season. On the contrary, when La Niña is strong, occurrence of coastal upwelling is less likely even if the southerly wind blows continuously. This is because the temperature stratification is formed at deeper than when El Niño is strong.

A Study on the Temperature fronts observed in the South-West Sea of Korea and the Northern Area of the East China Sea (한국 남$\cdot$서해 및 동중국해 북부해역에 출현하는 수온전선)

  • YANG Young Jin;KIM Sang Hyun;RHO Hong Kil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.5
    • /
    • pp.695-706
    • /
    • 1998
  • SST (Sea Surface. Temperature) fronts which were found in the South-West Sea of Korea and the northern area of the East China Sea were examined in order to clarify their positions, shapes, seasonal changes and the formation mechanism, For this study used SST data rearranged from the SST IR image during 1991 to 1996 and oceanographical data obtained by National Fisheries Research and Development Institute. Temperature front in the Cheju Strait was analyzed by the data obtained from a fisheries guidance ship of Cheju Provincial Government, The coastal frontal zone in the South-West Sea of Korea and the offshore frontal zone in the northern area of the East China Sea can be divided into several types (Type of Winter, Summer, Spring, Autumn and late Autumn), Short term variations of SST fronts have a tendency not to move to any Bleat extent for several days. The location of the frontal zone in the southwestern sea of Cheju Island changes on a much large scale than that of the one in the southern coast of Korea, The frontal Tone, formed every year in the southern sea of Korea approaches closer to the coastal area in winter, and moves closer to the south in spring and autumn. The frontal zone of the southwestern sea of Cheju Island moves in a westerly direction from the east, and reaches its most westerly point in the winter and its most easterly point in the summer related to the seasonal change of the Tsushima Current. Additionally, the frontal zone of the southwestern sea of Korea becomes extremely weak in March, April and November. SST fronts are formed every year around the line connecting Cheju Island to Yeoseo Island or to Chungsan Island in the Cheju Strait. A Ring-shaped tidal mixing front appears along the coastal area of Cheju Island throughout the year except during the months from November to January. Especially, in May and October fronts are formed between the coastal waters of Cheju Island and the Tsushima currents connecting the frontal zone of the coastal region in the southern sea of Korea with that of the southwestern sea of Cheju Island.

  • PDF

Factor Analysis of the Seawater Quality of the Southern Coastal Waters of Korea

  • Lee Yong-Hwan;Jung Kyoo-Jin;Kim Hak-Kook
    • Fisheries and Aquatic Sciences
    • /
    • v.6 no.3
    • /
    • pp.140-148
    • /
    • 2003
  • On the basis of factor analysis, stations were grouped according to their similar characteristics of seawater quality. The data for factor analysis were collected from the 15 stations from Dukryang Bay to Ulsan Bay on the southern cost of Korea. The study was based on the data from 1991 to 2000. The 8 water quality items analyzed were temperature, salinity, pH, DO, COD, DIN (dissolved inorganic nitrogen), DIP (dissolved inorganic phosphorus), and SS (suspended solid). Analysis of 6 water quality items including DO with the exception of temperature and salinity showed that 15 stations were grouped into two zones, i.e., the western and the eastern coast, by the axis of Samcheonpo-Jinju Bay-south of Geoje, 3 seawater zones in all. The adjacent stations to the southward or northward but not those to the eastward or westward were classified into the same group. On the analysis of all of the 8 water quality items, the stations of Dukryang Bay and Goheung; and those of Onsan and Ulsan Bay were classified into the same group. Yeosu and Namhae stations were sectioned into 1 group on the all seawater quality items but DIP, Samcheonpo and south of Geoje stations another group on all seawater quality items but water temperature, and Masan and Busan stations in the other group on all seawater quality items but DO. The stations from Dukryang Bay through Goheung to east of Geoje were grouped together on the COD item, and this showed somewhat different tendency in other seawater quality items.

Spatial and Temporal Variability of Significant Wave Height and Wave Direction in the Yellow Sea and East China Sea (황해와 동중국해에서의 유의파고와 파향의 시공간 변동성)

  • Hye-Jin Woo;Kyung-Ae Park;Kwang-Young Jeong;Do-Seong Byun;Hyun-Ju Oh
    • Journal of the Korean earth science society
    • /
    • v.44 no.1
    • /
    • pp.1-12
    • /
    • 2023
  • Oceanic wind waves have been recognized as one of the important indicators of global warming and climate change. It is necessary to study the spatial and temporal variability of significant wave height (SWH) and wave direction in the Yellow Sea and a part of the East China Sea, which is directly affected by the East Asian monsoon and climate change. In this study, the spatial and temporal variability including seasonal and interannual variability of SWH and wave direction in the Yellow Sea and East China Sea were analyzed using European Center for Medium-Range Weather Forecasts (ECMWF) Reanalysis 5 (ERA5) data. Prior to analyzing the variability of SWH and wave direction using the model reanalysis, the accuracy was verified through comparison with SWH and wave direction measurements from Ieodo Ocean Science Station (I-ORS). The mean SWH ranged from 0.3 to 1.6 m, and was higher in the south than in the north and higher in the center of the Yellow Sea than in the coast. The standard deviation of the SWH also showed a pattern similar to the mean. In the Yellow Sea, SWH and wave direction showed clear seasonal variability. SWH was generally highest in winter and lowest in late spring or early summer. Due to the influence of the monsoon, the wave direction propagated mainly to the south in winter and to the north in summer. The seasonal variability of SWH showed predominant interannual variability with strong variability of annual amplitudes due to the influence of typhoons in summer.